timm
/

rwightman's picture
rwightman HF staff
Update model config and README
be75d4a verified
|
raw
history blame
4.31 kB
metadata
tags:
  - image-classification
  - timm
library_name: timm
license: apache-2.0
datasets:
  - imagenet-1k

Model card for test_byobnet.r160_in1k

A very small test ByobNet (Residual mixed block) image classification model for testing and sanity checks. Trained on ImageNet-1k by Ross Wightman.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('test_byobnet.r160_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'test_byobnet.r160_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 24, 80, 80])
    #  torch.Size([1, 32, 40, 40])
    #  torch.Size([1, 64, 20, 20])
    #  torch.Size([1, 128, 10, 10])
    #  torch.Size([1, 256, 5, 5])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'test_byobnet.r160_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 256, 5, 5) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

By Top-1

model top1 top1_err top5 top5_err param_count img_size crop_pct
test_efficientnet.r160_in1k 47.156 52.844 71.726 28.274 0.36 192 1.0
test_byobnet.r160_in1k 46.698 53.302 71.674 28.326 0.46 192 1.0
test_efficientnet.r160_in1k 46.426 53.574 70.928 29.072 0.36 160 0.875
test_byobnet.r160_in1k 45.378 54.622 70.572 29.428 0.46 160 0.875
test_vit.r160_in1k 42.0 58.0 68.664 31.336 0.37 192 1.0
test_vit.r160_in1k 40.822 59.178 67.212 32.788 0.37 160 0.875

Citation

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}