Model card for hgnetv2_b5.ssld_stage2_ft_in1k
A HGNet-V2 (High Performance GPU Net) image classification model. Trained by model authors on mined ImageNet-22k and ImageNet-1k using SSLD distillation and further fine-tuned on ImageNet-1k.
Please see details at https://github.com/PaddlePaddle/PaddleClas/blob/develop/docs/zh_CN/models/ImageNet1k/PP-HGNetV2.md
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 39.6
- GMACs: 6.6
- Activations (M): 11.2
- Image size: train = 224 x 224, test = 288 x 288
- Pretrain Dataset: ImageNet-22k
- Dataset: ImageNet-1k
- Papers:
- Model paper unknown: TBD
- Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones: https://arxiv.org/abs/2103.05959
- Original: https://github.com/PaddlePaddle/PaddleClas
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('hgnetv2_b5.ssld_stage2_ft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'hgnetv2_b5.ssld_stage2_ft_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 128, 56, 56])
# torch.Size([1, 512, 28, 28])
# torch.Size([1, 1024, 14, 14])
# torch.Size([1, 2048, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'hgnetv2_b5.ssld_stage2_ft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2048, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
By Top-1
model | top1 | top1_err | top5 | top5_err | param_count | img_size |
---|---|---|---|---|---|---|
hgnetv2_b6.ssld_stage2_ft_in1k | 86.36 | 13.64 | 97.934 | 2.066 | 75.26 | 288 |
hgnetv2_b6.ssld_stage1_in22k_in1k | 86.294 | 13.706 | 97.948 | 2.052 | 75.26 | 288 |
hgnetv2_b6.ssld_stage2_ft_in1k | 86.204 | 13.796 | 97.81 | 2.19 | 75.26 | 224 |
hgnetv2_b6.ssld_stage1_in22k_in1k | 86.028 | 13.972 | 97.804 | 2.196 | 75.26 | 224 |
hgnet_base.ssld_in1k | 85.474 | 14.526 | 97.632 | 2.368 | 71.58 | 288 |
hgnetv2_b5.ssld_stage2_ft_in1k | 85.146 | 14.854 | 97.612 | 2.388 | 39.57 | 288 |
hgnetv2_b5.ssld_stage1_in22k_in1k | 84.928 | 15.072 | 97.514 | 2.486 | 39.57 | 288 |
hgnet_base.ssld_in1k | 84.912 | 15.088 | 97.342 | 2.658 | 71.58 | 224 |
hgnetv2_b5.ssld_stage2_ft_in1k | 84.808 | 15.192 | 97.3 | 2.7 | 39.57 | 224 |
hgnetv2_b5.ssld_stage1_in22k_in1k | 84.458 | 15.542 | 97.22 | 2.78 | 39.57 | 224 |
hgnet_small.ssld_in1k | 84.376 | 15.624 | 97.128 | 2.872 | 24.36 | 288 |
hgnetv2_b4.ssld_stage2_ft_in1k | 83.912 | 16.088 | 97.06 | 2.94 | 19.8 | 288 |
hgnet_small.ssld_in1k | 83.808 | 16.192 | 96.848 | 3.152 | 24.36 | 224 |
hgnetv2_b4.ssld_stage2_ft_in1k | 83.694 | 16.306 | 96.786 | 3.214 | 19.8 | 224 |
hgnetv2_b3.ssld_stage2_ft_in1k | 83.58 | 16.42 | 96.81 | 3.19 | 16.29 | 288 |
hgnetv2_b4.ssld_stage1_in22k_in1k | 83.45 | 16.55 | 96.92 | 3.08 | 19.8 | 288 |
hgnetv2_b3.ssld_stage1_in22k_in1k | 83.116 | 16.884 | 96.712 | 3.288 | 16.29 | 288 |
hgnetv2_b3.ssld_stage2_ft_in1k | 82.916 | 17.084 | 96.364 | 3.636 | 16.29 | 224 |
hgnetv2_b4.ssld_stage1_in22k_in1k | 82.892 | 17.108 | 96.632 | 3.368 | 19.8 | 224 |
hgnetv2_b3.ssld_stage1_in22k_in1k | 82.588 | 17.412 | 96.38 | 3.62 | 16.29 | 224 |
hgnet_tiny.ssld_in1k | 82.524 | 17.476 | 96.514 | 3.486 | 14.74 | 288 |
hgnetv2_b2.ssld_stage2_ft_in1k | 82.346 | 17.654 | 96.394 | 3.606 | 11.22 | 288 |
hgnet_small.paddle_in1k | 82.222 | 17.778 | 96.22 | 3.78 | 24.36 | 288 |
hgnet_tiny.ssld_in1k | 81.938 | 18.062 | 96.114 | 3.886 | 14.74 | 224 |
hgnetv2_b2.ssld_stage2_ft_in1k | 81.578 | 18.422 | 95.896 | 4.104 | 11.22 | 224 |
hgnetv2_b2.ssld_stage1_in22k_in1k | 81.46 | 18.54 | 96.01 | 3.99 | 11.22 | 288 |
hgnet_small.paddle_in1k | 81.358 | 18.642 | 95.832 | 4.168 | 24.36 | 224 |
hgnetv2_b2.ssld_stage1_in22k_in1k | 80.75 | 19.25 | 95.498 | 4.502 | 11.22 | 224 |
hgnet_tiny.paddle_in1k | 80.64 | 19.36 | 95.54 | 4.46 | 14.74 | 288 |
hgnetv2_b1.ssld_stage2_ft_in1k | 79.904 | 20.096 | 95.148 | 4.852 | 6.34 | 288 |
hgnet_tiny.paddle_in1k | 79.894 | 20.106 | 95.052 | 4.948 | 14.74 | 224 |
hgnetv2_b1.ssld_stage1_in22k_in1k | 79.048 | 20.952 | 94.882 | 5.118 | 6.34 | 288 |
hgnetv2_b1.ssld_stage2_ft_in1k | 78.872 | 21.128 | 94.492 | 5.508 | 6.34 | 224 |
hgnetv2_b0.ssld_stage2_ft_in1k | 78.586 | 21.414 | 94.388 | 5.612 | 6.0 | 288 |
hgnetv2_b1.ssld_stage1_in22k_in1k | 78.05 | 21.95 | 94.182 | 5.818 | 6.34 | 224 |
hgnetv2_b0.ssld_stage1_in22k_in1k | 78.026 | 21.974 | 94.242 | 5.758 | 6.0 | 288 |
hgnetv2_b0.ssld_stage2_ft_in1k | 77.342 | 22.658 | 93.786 | 6.214 | 6.0 | 224 |
hgnetv2_b0.ssld_stage1_in22k_in1k | 76.844 | 23.156 | 93.612 | 6.388 | 6.0 | 224 |
Citation
@article{cui2021beyond,
title={Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones},
author={Cui, Cheng and Guo, Ruoyu and Du, Yuning and He, Dongliang and Li, Fu and Wu, Zewu and Liu, Qiwen and Wen, Shilei and Huang, Jizhou and Hu, Xiaoguang and others},
journal={arXiv preprint arXiv:2103.05959},
year={2021}
}
- Downloads last month
- 1,339
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.