sft_gpt1b_domar_pretuned
This model is a fine-tuned version of AI-Sweden-Models/gpt-sw3-1.3b on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7491
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0408 | 0.02 | 500 | 1.8429 |
1.8949 | 0.04 | 1000 | 1.8312 |
1.9162 | 0.06 | 1500 | 1.8231 |
1.8998 | 0.08 | 2000 | 1.8155 |
1.9364 | 0.1 | 2500 | 1.8117 |
2.0648 | 0.12 | 3000 | 1.8071 |
1.92 | 0.14 | 3500 | 1.8044 |
1.9794 | 0.16 | 4000 | 1.8005 |
1.833 | 0.18 | 4500 | 1.7974 |
1.8542 | 0.19 | 5000 | 1.7936 |
1.8659 | 0.21 | 5500 | 1.7912 |
1.8421 | 0.23 | 6000 | 1.7896 |
1.8202 | 0.25 | 6500 | 1.7879 |
1.8231 | 0.27 | 7000 | 1.7861 |
1.7774 | 0.29 | 7500 | 1.7830 |
1.8576 | 0.31 | 8000 | 1.7820 |
1.9206 | 0.33 | 8500 | 1.7819 |
1.7701 | 0.35 | 9000 | 1.7787 |
1.9154 | 0.37 | 9500 | 1.7773 |
1.7924 | 0.39 | 10000 | 1.7768 |
1.7646 | 0.41 | 10500 | 1.7754 |
1.8582 | 0.43 | 11000 | 1.7747 |
1.8485 | 0.45 | 11500 | 1.7740 |
1.8672 | 0.47 | 12000 | 1.7719 |
1.7912 | 0.49 | 12500 | 1.7716 |
1.8929 | 0.51 | 13000 | 1.7706 |
1.8278 | 0.53 | 13500 | 1.7693 |
1.7581 | 0.55 | 14000 | 1.7692 |
1.7343 | 0.57 | 14500 | 1.7682 |
1.7705 | 0.58 | 15000 | 1.7675 |
1.8024 | 0.6 | 15500 | 1.7670 |
1.7718 | 0.62 | 16000 | 1.7666 |
1.875 | 0.64 | 16500 | 1.7653 |
1.8656 | 0.66 | 17000 | 1.7647 |
1.8507 | 0.68 | 17500 | 1.7647 |
1.8937 | 0.7 | 18000 | 1.7631 |
1.9148 | 0.72 | 18500 | 1.7635 |
1.9097 | 0.74 | 19000 | 1.7625 |
1.8544 | 0.76 | 19500 | 1.7626 |
1.764 | 0.78 | 20000 | 1.7616 |
1.9001 | 0.8 | 20500 | 1.7613 |
1.7522 | 0.82 | 21000 | 1.7606 |
1.8693 | 0.84 | 21500 | 1.7610 |
1.8401 | 0.86 | 22000 | 1.7597 |
1.9232 | 0.88 | 22500 | 1.7592 |
1.831 | 0.9 | 23000 | 1.7585 |
1.6971 | 0.92 | 23500 | 1.7585 |
1.8301 | 0.94 | 24000 | 1.7578 |
1.8073 | 0.95 | 24500 | 1.7574 |
1.8275 | 0.97 | 25000 | 1.7573 |
1.8264 | 0.99 | 25500 | 1.7568 |
1.8445 | 1.01 | 26000 | 1.7571 |
1.9199 | 1.03 | 26500 | 1.7568 |
1.8179 | 1.05 | 27000 | 1.7562 |
1.7981 | 1.07 | 27500 | 1.7563 |
1.6713 | 1.09 | 28000 | 1.7557 |
1.8074 | 1.11 | 28500 | 1.7554 |
1.7804 | 1.13 | 29000 | 1.7548 |
1.8705 | 1.15 | 29500 | 1.7547 |
1.9231 | 1.17 | 30000 | 1.7548 |
1.8122 | 1.19 | 30500 | 1.7543 |
1.8077 | 1.21 | 31000 | 1.7543 |
1.8287 | 1.23 | 31500 | 1.7545 |
1.9324 | 1.25 | 32000 | 1.7539 |
1.8805 | 1.27 | 32500 | 1.7540 |
1.8358 | 1.29 | 33000 | 1.7536 |
1.8764 | 1.31 | 33500 | 1.7533 |
1.8086 | 1.32 | 34000 | 1.7535 |
1.7498 | 1.34 | 34500 | 1.7528 |
1.797 | 1.36 | 35000 | 1.7525 |
1.8542 | 1.38 | 35500 | 1.7526 |
1.7607 | 1.4 | 36000 | 1.7525 |
1.8512 | 1.42 | 36500 | 1.7521 |
1.7835 | 1.44 | 37000 | 1.7524 |
1.8049 | 1.46 | 37500 | 1.7518 |
1.7505 | 1.48 | 38000 | 1.7516 |
1.8264 | 1.5 | 38500 | 1.7513 |
1.7702 | 1.52 | 39000 | 1.7515 |
1.7986 | 1.54 | 39500 | 1.7516 |
1.7365 | 1.56 | 40000 | 1.7508 |
1.8025 | 1.58 | 40500 | 1.7510 |
1.7735 | 1.6 | 41000 | 1.7511 |
1.7283 | 1.62 | 41500 | 1.7510 |
1.9033 | 1.64 | 42000 | 1.7511 |
1.7894 | 1.66 | 42500 | 1.7510 |
1.7704 | 1.68 | 43000 | 1.7510 |
1.8563 | 1.7 | 43500 | 1.7508 |
1.6044 | 1.71 | 44000 | 1.7508 |
1.8207 | 1.73 | 44500 | 1.7504 |
1.7754 | 1.75 | 45000 | 1.7501 |
1.8848 | 1.77 | 45500 | 1.7503 |
1.8676 | 1.79 | 46000 | 1.7502 |
1.8177 | 1.81 | 46500 | 1.7501 |
1.796 | 1.83 | 47000 | 1.7500 |
1.7601 | 1.85 | 47500 | 1.7500 |
1.8382 | 1.87 | 48000 | 1.7498 |
1.837 | 1.89 | 48500 | 1.7499 |
1.7535 | 1.91 | 49000 | 1.7501 |
1.8188 | 1.93 | 49500 | 1.7495 |
1.8605 | 1.95 | 50000 | 1.7498 |
1.8684 | 1.97 | 50500 | 1.7497 |
1.7781 | 1.99 | 51000 | 1.7496 |
1.8552 | 2.01 | 51500 | 1.7497 |
1.8877 | 2.03 | 52000 | 1.7495 |
1.7788 | 2.05 | 52500 | 1.7496 |
1.6927 | 2.07 | 53000 | 1.7494 |
1.8583 | 2.08 | 53500 | 1.7495 |
1.7151 | 2.1 | 54000 | 1.7496 |
1.7226 | 2.12 | 54500 | 1.7493 |
1.814 | 2.14 | 55000 | 1.7494 |
1.8081 | 2.16 | 55500 | 1.7495 |
1.8274 | 2.18 | 56000 | 1.7495 |
1.7429 | 2.2 | 56500 | 1.7494 |
1.7194 | 2.22 | 57000 | 1.7495 |
1.7235 | 2.24 | 57500 | 1.7494 |
1.8632 | 2.26 | 58000 | 1.7492 |
1.8566 | 2.28 | 58500 | 1.7494 |
1.7959 | 2.3 | 59000 | 1.7493 |
1.8105 | 2.32 | 59500 | 1.7494 |
1.8185 | 2.34 | 60000 | 1.7493 |
1.8954 | 2.36 | 60500 | 1.7494 |
1.7773 | 2.38 | 61000 | 1.7493 |
1.7128 | 2.4 | 61500 | 1.7493 |
1.8695 | 2.42 | 62000 | 1.7491 |
1.8141 | 2.44 | 62500 | 1.7492 |
1.8063 | 2.46 | 63000 | 1.7491 |
1.8224 | 2.47 | 63500 | 1.7492 |
1.8249 | 2.49 | 64000 | 1.7492 |
1.8307 | 2.51 | 64500 | 1.7492 |
1.8242 | 2.53 | 65000 | 1.7492 |
1.7097 | 2.55 | 65500 | 1.7493 |
1.7751 | 2.57 | 66000 | 1.7491 |
1.8486 | 2.59 | 66500 | 1.7492 |
1.7549 | 2.61 | 67000 | 1.7492 |
1.9036 | 2.63 | 67500 | 1.7491 |
1.7973 | 2.65 | 68000 | 1.7491 |
1.6557 | 2.67 | 68500 | 1.7491 |
1.9009 | 2.69 | 69000 | 1.7492 |
1.8524 | 2.71 | 69500 | 1.7491 |
1.7408 | 2.73 | 70000 | 1.7491 |
1.8297 | 2.75 | 70500 | 1.7491 |
1.7265 | 2.77 | 71000 | 1.7490 |
1.7858 | 2.79 | 71500 | 1.7491 |
1.8092 | 2.81 | 72000 | 1.7491 |
1.7578 | 2.83 | 72500 | 1.7491 |
1.8413 | 2.84 | 73000 | 1.7491 |
1.8003 | 2.86 | 73500 | 1.7491 |
1.8337 | 2.88 | 74000 | 1.7491 |
1.8258 | 2.9 | 74500 | 1.7491 |
1.8765 | 2.92 | 75000 | 1.7491 |
1.7002 | 2.94 | 75500 | 1.7491 |
1.9037 | 2.96 | 76000 | 1.7491 |
1.9034 | 2.98 | 76500 | 1.7491 |
Framework versions
- PEFT 0.8.2
- Transformers 4.38.1
- Pytorch 2.2.0+cu118
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 2
Model tree for thorirhrafn/sft_gpt1b_domar_pretuned
Base model
AI-Sweden-Models/gpt-sw3-1.3b