|
--- |
|
tags: |
|
- mteb |
|
- sentence-similarity |
|
- sentence-transformers |
|
- Sentence Transformers |
|
model-index: |
|
- name: gte-base-zh |
|
results: |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/AFQMC |
|
name: MTEB AFQMC |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 44.45621572456527 |
|
- type: cos_sim_spearman |
|
value: 49.06500895667604 |
|
- type: euclidean_pearson |
|
value: 47.55002064096053 |
|
- type: euclidean_spearman |
|
value: 49.06500895667604 |
|
- type: manhattan_pearson |
|
value: 47.429900262366715 |
|
- type: manhattan_spearman |
|
value: 48.95704890278774 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/ATEC |
|
name: MTEB ATEC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 44.31699346653116 |
|
- type: cos_sim_spearman |
|
value: 50.83133156721432 |
|
- type: euclidean_pearson |
|
value: 51.36086517946001 |
|
- type: euclidean_spearman |
|
value: 50.83132818894256 |
|
- type: manhattan_pearson |
|
value: 51.255926461574084 |
|
- type: manhattan_spearman |
|
value: 50.73460147395406 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 45.818000000000005 |
|
- type: f1 |
|
value: 43.998253644678144 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/BQ |
|
name: MTEB BQ |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 63.47477451918581 |
|
- type: cos_sim_spearman |
|
value: 65.49832607366159 |
|
- type: euclidean_pearson |
|
value: 64.11399760832107 |
|
- type: euclidean_spearman |
|
value: 65.49832260877398 |
|
- type: manhattan_pearson |
|
value: 64.02541311484639 |
|
- type: manhattan_spearman |
|
value: 65.42436057501452 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringP2P |
|
name: MTEB CLSClusteringP2P |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 42.58046835435111 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/CLSClusteringS2S |
|
name: MTEB CLSClusteringS2S |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 40.42134173217685 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv1-reranking |
|
name: MTEB CMedQAv1 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 86.79079943923792 |
|
- type: mrr |
|
value: 88.81341269841269 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/CMedQAv2-reranking |
|
name: MTEB CMedQAv2 |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 87.20186031249037 |
|
- type: mrr |
|
value: 89.46551587301587 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CmedqaRetrieval |
|
name: MTEB CmedqaRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.098 |
|
- type: map_at_10 |
|
value: 37.759 |
|
- type: map_at_100 |
|
value: 39.693 |
|
- type: map_at_1000 |
|
value: 39.804 |
|
- type: map_at_3 |
|
value: 33.477000000000004 |
|
- type: map_at_5 |
|
value: 35.839 |
|
- type: mrr_at_1 |
|
value: 38.06 |
|
- type: mrr_at_10 |
|
value: 46.302 |
|
- type: mrr_at_100 |
|
value: 47.370000000000005 |
|
- type: mrr_at_1000 |
|
value: 47.412 |
|
- type: mrr_at_3 |
|
value: 43.702999999999996 |
|
- type: mrr_at_5 |
|
value: 45.213 |
|
- type: ndcg_at_1 |
|
value: 38.06 |
|
- type: ndcg_at_10 |
|
value: 44.375 |
|
- type: ndcg_at_100 |
|
value: 51.849999999999994 |
|
- type: ndcg_at_1000 |
|
value: 53.725 |
|
- type: ndcg_at_3 |
|
value: 38.97 |
|
- type: ndcg_at_5 |
|
value: 41.193000000000005 |
|
- type: precision_at_1 |
|
value: 38.06 |
|
- type: precision_at_10 |
|
value: 9.934999999999999 |
|
- type: precision_at_100 |
|
value: 1.599 |
|
- type: precision_at_1000 |
|
value: 0.183 |
|
- type: precision_at_3 |
|
value: 22.072 |
|
- type: precision_at_5 |
|
value: 16.089000000000002 |
|
- type: recall_at_1 |
|
value: 25.098 |
|
- type: recall_at_10 |
|
value: 55.264 |
|
- type: recall_at_100 |
|
value: 85.939 |
|
- type: recall_at_1000 |
|
value: 98.44800000000001 |
|
- type: recall_at_3 |
|
value: 39.122 |
|
- type: recall_at_5 |
|
value: 45.948 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/CMNLI |
|
name: MTEB Cmnli |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 78.02766085387853 |
|
- type: cos_sim_ap |
|
value: 85.59982802559004 |
|
- type: cos_sim_f1 |
|
value: 79.57103418984921 |
|
- type: cos_sim_precision |
|
value: 72.88465279128575 |
|
- type: cos_sim_recall |
|
value: 87.60813654430676 |
|
- type: dot_accuracy |
|
value: 78.02766085387853 |
|
- type: dot_ap |
|
value: 85.59604477360719 |
|
- type: dot_f1 |
|
value: 79.57103418984921 |
|
- type: dot_precision |
|
value: 72.88465279128575 |
|
- type: dot_recall |
|
value: 87.60813654430676 |
|
- type: euclidean_accuracy |
|
value: 78.02766085387853 |
|
- type: euclidean_ap |
|
value: 85.59982802559004 |
|
- type: euclidean_f1 |
|
value: 79.57103418984921 |
|
- type: euclidean_precision |
|
value: 72.88465279128575 |
|
- type: euclidean_recall |
|
value: 87.60813654430676 |
|
- type: manhattan_accuracy |
|
value: 77.9795550210463 |
|
- type: manhattan_ap |
|
value: 85.58042267497707 |
|
- type: manhattan_f1 |
|
value: 79.40344001741781 |
|
- type: manhattan_precision |
|
value: 74.29211652067632 |
|
- type: manhattan_recall |
|
value: 85.27004909983633 |
|
- type: max_accuracy |
|
value: 78.02766085387853 |
|
- type: max_ap |
|
value: 85.59982802559004 |
|
- type: max_f1 |
|
value: 79.57103418984921 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/CovidRetrieval |
|
name: MTEB CovidRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 62.144 |
|
- type: map_at_10 |
|
value: 71.589 |
|
- type: map_at_100 |
|
value: 72.066 |
|
- type: map_at_1000 |
|
value: 72.075 |
|
- type: map_at_3 |
|
value: 69.916 |
|
- type: map_at_5 |
|
value: 70.806 |
|
- type: mrr_at_1 |
|
value: 62.275999999999996 |
|
- type: mrr_at_10 |
|
value: 71.57 |
|
- type: mrr_at_100 |
|
value: 72.048 |
|
- type: mrr_at_1000 |
|
value: 72.057 |
|
- type: mrr_at_3 |
|
value: 69.89800000000001 |
|
- type: mrr_at_5 |
|
value: 70.84700000000001 |
|
- type: ndcg_at_1 |
|
value: 62.381 |
|
- type: ndcg_at_10 |
|
value: 75.74 |
|
- type: ndcg_at_100 |
|
value: 77.827 |
|
- type: ndcg_at_1000 |
|
value: 78.044 |
|
- type: ndcg_at_3 |
|
value: 72.307 |
|
- type: ndcg_at_5 |
|
value: 73.91499999999999 |
|
- type: precision_at_1 |
|
value: 62.381 |
|
- type: precision_at_10 |
|
value: 8.946 |
|
- type: precision_at_100 |
|
value: 0.988 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 26.554 |
|
- type: precision_at_5 |
|
value: 16.733 |
|
- type: recall_at_1 |
|
value: 62.144 |
|
- type: recall_at_10 |
|
value: 88.567 |
|
- type: recall_at_100 |
|
value: 97.84 |
|
- type: recall_at_1000 |
|
value: 99.473 |
|
- type: recall_at_3 |
|
value: 79.083 |
|
- type: recall_at_5 |
|
value: 83.035 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/DuRetrieval |
|
name: MTEB DuRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.665 |
|
- type: map_at_10 |
|
value: 74.91600000000001 |
|
- type: map_at_100 |
|
value: 77.981 |
|
- type: map_at_1000 |
|
value: 78.032 |
|
- type: map_at_3 |
|
value: 51.015 |
|
- type: map_at_5 |
|
value: 64.681 |
|
- type: mrr_at_1 |
|
value: 86.5 |
|
- type: mrr_at_10 |
|
value: 90.78399999999999 |
|
- type: mrr_at_100 |
|
value: 90.859 |
|
- type: mrr_at_1000 |
|
value: 90.863 |
|
- type: mrr_at_3 |
|
value: 90.375 |
|
- type: mrr_at_5 |
|
value: 90.66199999999999 |
|
- type: ndcg_at_1 |
|
value: 86.5 |
|
- type: ndcg_at_10 |
|
value: 83.635 |
|
- type: ndcg_at_100 |
|
value: 86.926 |
|
- type: ndcg_at_1000 |
|
value: 87.425 |
|
- type: ndcg_at_3 |
|
value: 81.28999999999999 |
|
- type: ndcg_at_5 |
|
value: 80.549 |
|
- type: precision_at_1 |
|
value: 86.5 |
|
- type: precision_at_10 |
|
value: 40.544999999999995 |
|
- type: precision_at_100 |
|
value: 4.748 |
|
- type: precision_at_1000 |
|
value: 0.48700000000000004 |
|
- type: precision_at_3 |
|
value: 72.68299999999999 |
|
- type: precision_at_5 |
|
value: 61.86000000000001 |
|
- type: recall_at_1 |
|
value: 24.665 |
|
- type: recall_at_10 |
|
value: 85.72 |
|
- type: recall_at_100 |
|
value: 96.116 |
|
- type: recall_at_1000 |
|
value: 98.772 |
|
- type: recall_at_3 |
|
value: 53.705999999999996 |
|
- type: recall_at_5 |
|
value: 70.42699999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/EcomRetrieval |
|
name: MTEB EcomRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 54.0 |
|
- type: map_at_10 |
|
value: 64.449 |
|
- type: map_at_100 |
|
value: 64.937 |
|
- type: map_at_1000 |
|
value: 64.946 |
|
- type: map_at_3 |
|
value: 61.85000000000001 |
|
- type: map_at_5 |
|
value: 63.525 |
|
- type: mrr_at_1 |
|
value: 54.0 |
|
- type: mrr_at_10 |
|
value: 64.449 |
|
- type: mrr_at_100 |
|
value: 64.937 |
|
- type: mrr_at_1000 |
|
value: 64.946 |
|
- type: mrr_at_3 |
|
value: 61.85000000000001 |
|
- type: mrr_at_5 |
|
value: 63.525 |
|
- type: ndcg_at_1 |
|
value: 54.0 |
|
- type: ndcg_at_10 |
|
value: 69.56400000000001 |
|
- type: ndcg_at_100 |
|
value: 71.78999999999999 |
|
- type: ndcg_at_1000 |
|
value: 72.021 |
|
- type: ndcg_at_3 |
|
value: 64.334 |
|
- type: ndcg_at_5 |
|
value: 67.368 |
|
- type: precision_at_1 |
|
value: 54.0 |
|
- type: precision_at_10 |
|
value: 8.559999999999999 |
|
- type: precision_at_100 |
|
value: 0.9570000000000001 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 23.833 |
|
- type: precision_at_5 |
|
value: 15.78 |
|
- type: recall_at_1 |
|
value: 54.0 |
|
- type: recall_at_10 |
|
value: 85.6 |
|
- type: recall_at_100 |
|
value: 95.7 |
|
- type: recall_at_1000 |
|
value: 97.5 |
|
- type: recall_at_3 |
|
value: 71.5 |
|
- type: recall_at_5 |
|
value: 78.9 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/IFlyTek-classification |
|
name: MTEB IFlyTek |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 48.61869949980762 |
|
- type: f1 |
|
value: 36.49337336098832 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/JDReview-classification |
|
name: MTEB JDReview |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 85.94746716697938 |
|
- type: ap |
|
value: 53.75927589310753 |
|
- type: f1 |
|
value: 80.53821597736138 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/LCQMC |
|
name: MTEB LCQMC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 68.77445518082875 |
|
- type: cos_sim_spearman |
|
value: 74.05909185405268 |
|
- type: euclidean_pearson |
|
value: 72.92870557009725 |
|
- type: euclidean_spearman |
|
value: 74.05909628639644 |
|
- type: manhattan_pearson |
|
value: 72.92072580598351 |
|
- type: manhattan_spearman |
|
value: 74.0304390211741 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/Mmarco-reranking |
|
name: MTEB MMarcoReranking |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 27.643607073221975 |
|
- type: mrr |
|
value: 26.646825396825395 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MMarcoRetrieval |
|
name: MTEB MMarcoRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 65.10000000000001 |
|
- type: map_at_10 |
|
value: 74.014 |
|
- type: map_at_100 |
|
value: 74.372 |
|
- type: map_at_1000 |
|
value: 74.385 |
|
- type: map_at_3 |
|
value: 72.179 |
|
- type: map_at_5 |
|
value: 73.37700000000001 |
|
- type: mrr_at_1 |
|
value: 67.364 |
|
- type: mrr_at_10 |
|
value: 74.68 |
|
- type: mrr_at_100 |
|
value: 74.992 |
|
- type: mrr_at_1000 |
|
value: 75.003 |
|
- type: mrr_at_3 |
|
value: 73.054 |
|
- type: mrr_at_5 |
|
value: 74.126 |
|
- type: ndcg_at_1 |
|
value: 67.364 |
|
- type: ndcg_at_10 |
|
value: 77.704 |
|
- type: ndcg_at_100 |
|
value: 79.29899999999999 |
|
- type: ndcg_at_1000 |
|
value: 79.637 |
|
- type: ndcg_at_3 |
|
value: 74.232 |
|
- type: ndcg_at_5 |
|
value: 76.264 |
|
- type: precision_at_1 |
|
value: 67.364 |
|
- type: precision_at_10 |
|
value: 9.397 |
|
- type: precision_at_100 |
|
value: 1.019 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: precision_at_3 |
|
value: 27.942 |
|
- type: precision_at_5 |
|
value: 17.837 |
|
- type: recall_at_1 |
|
value: 65.10000000000001 |
|
- type: recall_at_10 |
|
value: 88.416 |
|
- type: recall_at_100 |
|
value: 95.61 |
|
- type: recall_at_1000 |
|
value: 98.261 |
|
- type: recall_at_3 |
|
value: 79.28 |
|
- type: recall_at_5 |
|
value: 84.108 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 73.315400134499 |
|
- type: f1 |
|
value: 70.81060697693198 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 76.78883658372563 |
|
- type: f1 |
|
value: 76.21512438791976 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/MedicalRetrieval |
|
name: MTEB MedicalRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 55.300000000000004 |
|
- type: map_at_10 |
|
value: 61.879 |
|
- type: map_at_100 |
|
value: 62.434 |
|
- type: map_at_1000 |
|
value: 62.476 |
|
- type: map_at_3 |
|
value: 60.417 |
|
- type: map_at_5 |
|
value: 61.297000000000004 |
|
- type: mrr_at_1 |
|
value: 55.400000000000006 |
|
- type: mrr_at_10 |
|
value: 61.92100000000001 |
|
- type: mrr_at_100 |
|
value: 62.476 |
|
- type: mrr_at_1000 |
|
value: 62.517999999999994 |
|
- type: mrr_at_3 |
|
value: 60.483 |
|
- type: mrr_at_5 |
|
value: 61.338 |
|
- type: ndcg_at_1 |
|
value: 55.300000000000004 |
|
- type: ndcg_at_10 |
|
value: 64.937 |
|
- type: ndcg_at_100 |
|
value: 67.848 |
|
- type: ndcg_at_1000 |
|
value: 68.996 |
|
- type: ndcg_at_3 |
|
value: 61.939 |
|
- type: ndcg_at_5 |
|
value: 63.556999999999995 |
|
- type: precision_at_1 |
|
value: 55.300000000000004 |
|
- type: precision_at_10 |
|
value: 7.449999999999999 |
|
- type: precision_at_100 |
|
value: 0.886 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 22.1 |
|
- type: precision_at_5 |
|
value: 14.06 |
|
- type: recall_at_1 |
|
value: 55.300000000000004 |
|
- type: recall_at_10 |
|
value: 74.5 |
|
- type: recall_at_100 |
|
value: 88.6 |
|
- type: recall_at_1000 |
|
value: 97.7 |
|
- type: recall_at_3 |
|
value: 66.3 |
|
- type: recall_at_5 |
|
value: 70.3 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/MultilingualSentiment-classification |
|
name: MTEB MultilingualSentiment |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 75.79 |
|
- type: f1 |
|
value: 75.58944709087194 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: C-MTEB/OCNLI |
|
name: MTEB Ocnli |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 71.5755278830536 |
|
- type: cos_sim_ap |
|
value: 75.27777388526098 |
|
- type: cos_sim_f1 |
|
value: 75.04604051565377 |
|
- type: cos_sim_precision |
|
value: 66.53061224489795 |
|
- type: cos_sim_recall |
|
value: 86.06124604012672 |
|
- type: dot_accuracy |
|
value: 71.5755278830536 |
|
- type: dot_ap |
|
value: 75.27765883143745 |
|
- type: dot_f1 |
|
value: 75.04604051565377 |
|
- type: dot_precision |
|
value: 66.53061224489795 |
|
- type: dot_recall |
|
value: 86.06124604012672 |
|
- type: euclidean_accuracy |
|
value: 71.5755278830536 |
|
- type: euclidean_ap |
|
value: 75.27762982049899 |
|
- type: euclidean_f1 |
|
value: 75.04604051565377 |
|
- type: euclidean_precision |
|
value: 66.53061224489795 |
|
- type: euclidean_recall |
|
value: 86.06124604012672 |
|
- type: manhattan_accuracy |
|
value: 71.41310232809963 |
|
- type: manhattan_ap |
|
value: 75.11908556317425 |
|
- type: manhattan_f1 |
|
value: 75.0118091639112 |
|
- type: manhattan_precision |
|
value: 67.86324786324786 |
|
- type: manhattan_recall |
|
value: 83.84371700105596 |
|
- type: max_accuracy |
|
value: 71.5755278830536 |
|
- type: max_ap |
|
value: 75.27777388526098 |
|
- type: max_f1 |
|
value: 75.04604051565377 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/OnlineShopping-classification |
|
name: MTEB OnlineShopping |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 93.36 |
|
- type: ap |
|
value: 91.66871784150999 |
|
- type: f1 |
|
value: 93.35216314755989 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/PAWSX |
|
name: MTEB PAWSX |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 24.21926662784366 |
|
- type: cos_sim_spearman |
|
value: 27.969680921064644 |
|
- type: euclidean_pearson |
|
value: 28.75506415195721 |
|
- type: euclidean_spearman |
|
value: 27.969593815056058 |
|
- type: manhattan_pearson |
|
value: 28.90608040712011 |
|
- type: manhattan_spearman |
|
value: 28.07097299964309 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/QBQTC |
|
name: MTEB QBQTC |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 33.4112661812038 |
|
- type: cos_sim_spearman |
|
value: 35.192765228905174 |
|
- type: euclidean_pearson |
|
value: 33.57803958232971 |
|
- type: euclidean_spearman |
|
value: 35.19270413260232 |
|
- type: manhattan_pearson |
|
value: 33.75933288702631 |
|
- type: manhattan_spearman |
|
value: 35.362780488430126 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 62.178764479940206 |
|
- type: cos_sim_spearman |
|
value: 63.644049344272155 |
|
- type: euclidean_pearson |
|
value: 61.97852518030118 |
|
- type: euclidean_spearman |
|
value: 63.644049344272155 |
|
- type: manhattan_pearson |
|
value: 62.3931275533103 |
|
- type: manhattan_spearman |
|
value: 63.68720814152202 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: C-MTEB/STSB |
|
name: MTEB STSB |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.09847341753118 |
|
- type: cos_sim_spearman |
|
value: 81.46211495319093 |
|
- type: euclidean_pearson |
|
value: 80.97905808856734 |
|
- type: euclidean_spearman |
|
value: 81.46177732221445 |
|
- type: manhattan_pearson |
|
value: 80.8737913286308 |
|
- type: manhattan_spearman |
|
value: 81.41142532907402 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: C-MTEB/T2Reranking |
|
name: MTEB T2Reranking |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map |
|
value: 66.36295416100998 |
|
- type: mrr |
|
value: 76.42041058129412 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/T2Retrieval |
|
name: MTEB T2Retrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.898 |
|
- type: map_at_10 |
|
value: 75.089 |
|
- type: map_at_100 |
|
value: 78.786 |
|
- type: map_at_1000 |
|
value: 78.86 |
|
- type: map_at_3 |
|
value: 52.881 |
|
- type: map_at_5 |
|
value: 64.881 |
|
- type: mrr_at_1 |
|
value: 88.984 |
|
- type: mrr_at_10 |
|
value: 91.681 |
|
- type: mrr_at_100 |
|
value: 91.77300000000001 |
|
- type: mrr_at_1000 |
|
value: 91.777 |
|
- type: mrr_at_3 |
|
value: 91.205 |
|
- type: mrr_at_5 |
|
value: 91.486 |
|
- type: ndcg_at_1 |
|
value: 88.984 |
|
- type: ndcg_at_10 |
|
value: 83.083 |
|
- type: ndcg_at_100 |
|
value: 86.955 |
|
- type: ndcg_at_1000 |
|
value: 87.665 |
|
- type: ndcg_at_3 |
|
value: 84.661 |
|
- type: ndcg_at_5 |
|
value: 83.084 |
|
- type: precision_at_1 |
|
value: 88.984 |
|
- type: precision_at_10 |
|
value: 41.311 |
|
- type: precision_at_100 |
|
value: 4.978 |
|
- type: precision_at_1000 |
|
value: 0.515 |
|
- type: precision_at_3 |
|
value: 74.074 |
|
- type: precision_at_5 |
|
value: 61.956999999999994 |
|
- type: recall_at_1 |
|
value: 26.898 |
|
- type: recall_at_10 |
|
value: 82.03200000000001 |
|
- type: recall_at_100 |
|
value: 94.593 |
|
- type: recall_at_1000 |
|
value: 98.188 |
|
- type: recall_at_3 |
|
value: 54.647999999999996 |
|
- type: recall_at_5 |
|
value: 68.394 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/TNews-classification |
|
name: MTEB TNews |
|
config: default |
|
split: validation |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 53.648999999999994 |
|
- type: f1 |
|
value: 51.87788185753318 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringP2P |
|
name: MTEB ThuNewsClusteringP2P |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 68.81293224496076 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: C-MTEB/ThuNewsClusteringS2S |
|
name: MTEB ThuNewsClusteringS2S |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: v_measure |
|
value: 63.60504270553153 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: C-MTEB/VideoRetrieval |
|
name: MTEB VideoRetrieval |
|
config: default |
|
split: dev |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 59.3 |
|
- type: map_at_10 |
|
value: 69.89 |
|
- type: map_at_100 |
|
value: 70.261 |
|
- type: map_at_1000 |
|
value: 70.27 |
|
- type: map_at_3 |
|
value: 67.93299999999999 |
|
- type: map_at_5 |
|
value: 69.10300000000001 |
|
- type: mrr_at_1 |
|
value: 59.3 |
|
- type: mrr_at_10 |
|
value: 69.89 |
|
- type: mrr_at_100 |
|
value: 70.261 |
|
- type: mrr_at_1000 |
|
value: 70.27 |
|
- type: mrr_at_3 |
|
value: 67.93299999999999 |
|
- type: mrr_at_5 |
|
value: 69.10300000000001 |
|
- type: ndcg_at_1 |
|
value: 59.3 |
|
- type: ndcg_at_10 |
|
value: 74.67099999999999 |
|
- type: ndcg_at_100 |
|
value: 76.371 |
|
- type: ndcg_at_1000 |
|
value: 76.644 |
|
- type: ndcg_at_3 |
|
value: 70.678 |
|
- type: ndcg_at_5 |
|
value: 72.783 |
|
- type: precision_at_1 |
|
value: 59.3 |
|
- type: precision_at_10 |
|
value: 8.95 |
|
- type: precision_at_100 |
|
value: 0.972 |
|
- type: precision_at_1000 |
|
value: 0.099 |
|
- type: precision_at_3 |
|
value: 26.200000000000003 |
|
- type: precision_at_5 |
|
value: 16.74 |
|
- type: recall_at_1 |
|
value: 59.3 |
|
- type: recall_at_10 |
|
value: 89.5 |
|
- type: recall_at_100 |
|
value: 97.2 |
|
- type: recall_at_1000 |
|
value: 99.4 |
|
- type: recall_at_3 |
|
value: 78.60000000000001 |
|
- type: recall_at_5 |
|
value: 83.7 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: C-MTEB/waimai-classification |
|
name: MTEB Waimai |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: accuracy |
|
value: 88.07000000000001 |
|
- type: ap |
|
value: 72.68881791758656 |
|
- type: f1 |
|
value: 86.647906274628 |
|
language: |
|
- en |
|
license: mit |
|
--- |
|
|
|
# gte-base-zh |
|
|
|
General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281) |
|
|
|
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer different sizes of models for both Chinese and English Languages. The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc. |
|
|
|
## Model List |
|
|
|
| Models | Language | Max Sequence Length | Dimension | Model Size | |
|
|:-----: | :-----: |:-----: |:-----: |:-----: | |
|
|[GTE-large-zh](https://huggingface.co/thenlper/gte-large-zh) | Chinese | 512 | 1024 | 0.67GB | |
|
|[GTE-base-zh](https://huggingface.co/thenlper/gte-base-zh) | Chinese | 512 | 1024 | 0.67GB | |
|
|[GTE-small-zh](https://huggingface.co/thenlper/gte-small-zh) | Chinese | 512 | 1024 | 0.67GB | |
|
|[GTE-large](https://huggingface.co/thenlper/gte-large) | English | 512 | 1024 | 0.67GB | |
|
|[GTE-base](https://huggingface.co/thenlper/gte-base) | English | 512 | 1024 | 0.67GB | |
|
|[GTE-small](https://huggingface.co/thenlper/gte-small) | English | 512 | 1024 | 0.67GB | |
|
|
|
|
|
## Metrics |
|
|
|
We compared the performance of the GTE models with other popular text embedding models on the MTEB (CMTEB for Chinese language) benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard). |
|
|
|
|
|
- Evaluation results on CMTEB |
|
|
|
| Model | Model Size (GB) | Embedding Dimensions | Sequence Length | Average (35 datasets) | Classification (9 datasets) | Clustering (4 datasets) | Pair Classification (2 datasets) | Reranking (4 datasets) | Retrieval (8 datasets) | STS (8 datasets) | |
|
| ------------------- | -------------- | -------------------- | ---------------- | --------------------- | ------------------------------------ | ------------------------------ | --------------------------------------- | ------------------------------ | ---------------------------- | ------------------------ | |
|
| **gte-large-zh** | 0.65 | 1024 | 512 | **66.72** | 71.34 | 53.07 | 81.14 | 67.42 | 72.49 | 57.82 | |
|
| gte-base-zh | 0.20 | 768 | 512 | 65.92 | 71.26 | 53.86 | 80.44 | 67.00 | 71.71 | 55.96 | |
|
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | 65.13 | 69.05 | 49.16 | 82.68 | 66.41 | 70.14 | 58.66 | |
|
| stella-large-zh | 0.65 | 1024 | 1024 | 64.54 | 67.62 | 48.65 | 78.72 | 65.98 | 71.02 | 58.3 | |
|
| bge-large-zh-v1.5 | 1.3 | 1024 | 512 | 64.53 | 69.13 | 48.99 | 81.6 | 65.84 | 70.46 | 56.25 | |
|
| stella-base-zh-v2 | 0.21 | 768 | 1024 | 64.36 | 68.29 | 49.4 | 79.96 | 66.1 | 70.08 | 56.92 | |
|
| stella-base-zh | 0.21 | 768 | 1024 | 64.16 | 67.77 | 48.7 | 76.09 | 66.95 | 71.07 | 56.54 | |
|
| piccolo-large-zh | 0.65 | 1024 | 512 | 64.11 | 67.03 | 47.04 | 78.38 | 65.98 | 70.93 | 58.02 | |
|
| piccolo-base-zh | 0.2 | 768 | 512 | 63.66 | 66.98 | 47.12 | 76.61 | 66.68 | 71.2 | 55.9 | |
|
| gte-small-zh | 0.1 | 512 | 512 | 60.08 | 64.49 | 48.95 | 69.99 | 66.21 | 65.50 | 49.72 | |
|
| bge-small-zh-v1.5 | 0.1 | 512 | 512 | 57.82 | 63.96 | 44.18 | 70.4 | 60.92 | 61.77 | 49.1 | |
|
| m3e-base | 0.41 | 768 | 512 | 57.79 | 67.52 | 47.68 | 63.99 | 59.54| 56.91 | 50.47 | |
|
|text-embedding-ada-002(openai) | - | 1536| 8192 | 53.02 | 64.31 | 45.68 | 69.56 | 54.28 | 52.0 | 43.35 | |
|
|
|
|
|
## Usage |
|
|
|
Code example |
|
|
|
```python |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
input_texts = [ |
|
"中国的首都是哪里", |
|
"你喜欢去哪里旅游", |
|
"北京", |
|
"今天中午吃什么" |
|
] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-base-zh") |
|
model = AutoModel.from_pretrained("thenlper/gte-base-zh") |
|
|
|
# Tokenize the input texts |
|
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') |
|
|
|
outputs = model(**batch_dict) |
|
embeddings = outputs.last_hidden_state[:, 0] |
|
|
|
# (Optionally) normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:1] @ embeddings[1:].T) * 100 |
|
print(scores.tolist()) |
|
``` |
|
|
|
Use with sentence-transformers: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.util import cos_sim |
|
|
|
sentences = ['中国的首都是哪里', '中国的首都是北京'] |
|
|
|
model = SentenceTransformer('thenlper/gte-base-zh') |
|
embeddings = model.encode(sentences) |
|
print(cos_sim(embeddings[0], embeddings[1])) |
|
``` |
|
|
|
### Limitation |
|
|
|
This model exclusively caters to Chinese texts, and any lengthy texts will be truncated to a maximum of 512 tokens. |
|
|
|
### Citation |
|
|
|
If you find our paper or models helpful, please consider citing them as follows: |
|
|
|
``` |
|
@article{li2023towards, |
|
title={Towards general text embeddings with multi-stage contrastive learning}, |
|
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan}, |
|
journal={arXiv preprint arXiv:2308.03281}, |
|
year={2023} |
|
} |
|
``` |