texasdave2's picture
Training in progress epoch 2
9fc93da
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: texasdave2/distilbert-base-uncased-finetuned-ner
    results: []

texasdave2/distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0210
  • Validation Loss: 0.0570
  • Train Precision: 0.9300
  • Train Recall: 0.9394
  • Train F1: 0.9347
  • Train Accuracy: 0.9847
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 10530, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
0.1337 0.0643 0.9133 0.9295 0.9213 0.9817 0
0.0404 0.0550 0.9261 0.9413 0.9336 0.9846 1
0.0210 0.0570 0.9300 0.9394 0.9347 0.9847 2

Framework versions

  • Transformers 4.33.1
  • TensorFlow 2.13.0
  • Datasets 2.14.5
  • Tokenizers 0.13.3