Edit model card
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

mixtao/MixTAO-7Bx2-MoE-v8.1 - GGUF

This repo contains GGUF format model files for mixtao/MixTAO-7Bx2-MoE-v8.1.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

### System:
{system_prompt}
### Instruction:
{prompt}
### Response:

Model file specification

Filename Quant type File Size Description
MixTAO-7Bx2-MoE-v8.1-Q2_K.gguf Q2_K 4.434 GB smallest, significant quality loss - not recommended for most purposes
MixTAO-7Bx2-MoE-v8.1-Q3_K_S.gguf Q3_K_S 5.204 GB very small, high quality loss
MixTAO-7Bx2-MoE-v8.1-Q3_K_M.gguf Q3_K_M 5.780 GB very small, high quality loss
MixTAO-7Bx2-MoE-v8.1-Q3_K_L.gguf Q3_K_L 6.268 GB small, substantial quality loss
MixTAO-7Bx2-MoE-v8.1-Q4_0.gguf Q4_0 6.781 GB legacy; small, very high quality loss - prefer using Q3_K_M
MixTAO-7Bx2-MoE-v8.1-Q4_K_S.gguf Q4_K_S 6.837 GB small, greater quality loss
MixTAO-7Bx2-MoE-v8.1-Q4_K_M.gguf Q4_K_M 7.248 GB medium, balanced quality - recommended
MixTAO-7Bx2-MoE-v8.1-Q5_0.gguf Q5_0 8.265 GB legacy; medium, balanced quality - prefer using Q4_K_M
MixTAO-7Bx2-MoE-v8.1-Q5_K_S.gguf Q5_K_S 8.265 GB large, low quality loss - recommended
MixTAO-7Bx2-MoE-v8.1-Q5_K_M.gguf Q5_K_M 8.506 GB large, very low quality loss - recommended
MixTAO-7Bx2-MoE-v8.1-Q6_K.gguf Q6_K 9.842 GB very large, extremely low quality loss
MixTAO-7Bx2-MoE-v8.1-Q8_0.gguf Q8_0 12.746 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/MixTAO-7Bx2-MoE-v8.1-GGUF --include "MixTAO-7Bx2-MoE-v8.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/MixTAO-7Bx2-MoE-v8.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
179
GGUF
Model size
12.9B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Model tree for tensorblock/MixTAO-7Bx2-MoE-v8.1-GGUF

Quantized
(6)
this model

Evaluation results