Text Generation
GGUF
English
shining-valiant
shining-valiant-2
valiant
valiant-labs
llama
llama-3.1
llama-3.1-instruct
llama-3.1-instruct-8b
llama-3
llama-3-instruct
llama-3-instruct-8b
8b
science
physics
biology
chemistry
compsci
computer-science
engineering
technical
conversational
chat
instruct
TensorBlock
GGUF
Eval Results
Inference Endpoints
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
ValiantLabs/Llama3.1-8B-ShiningValiant2 - GGUF
This repo contains GGUF format model files for ValiantLabs/Llama3.1-8B-ShiningValiant2.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Llama3.1-8B-ShiningValiant2-Q2_K.gguf | Q2_K | 2.961 GB | smallest, significant quality loss - not recommended for most purposes |
Llama3.1-8B-ShiningValiant2-Q3_K_S.gguf | Q3_K_S | 3.413 GB | very small, high quality loss |
Llama3.1-8B-ShiningValiant2-Q3_K_M.gguf | Q3_K_M | 3.743 GB | very small, high quality loss |
Llama3.1-8B-ShiningValiant2-Q3_K_L.gguf | Q3_K_L | 4.025 GB | small, substantial quality loss |
Llama3.1-8B-ShiningValiant2-Q4_0.gguf | Q4_0 | 4.341 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Llama3.1-8B-ShiningValiant2-Q4_K_S.gguf | Q4_K_S | 4.370 GB | small, greater quality loss |
Llama3.1-8B-ShiningValiant2-Q4_K_M.gguf | Q4_K_M | 4.583 GB | medium, balanced quality - recommended |
Llama3.1-8B-ShiningValiant2-Q5_0.gguf | Q5_0 | 5.215 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Llama3.1-8B-ShiningValiant2-Q5_K_S.gguf | Q5_K_S | 5.215 GB | large, low quality loss - recommended |
Llama3.1-8B-ShiningValiant2-Q5_K_M.gguf | Q5_K_M | 5.339 GB | large, very low quality loss - recommended |
Llama3.1-8B-ShiningValiant2-Q6_K.gguf | Q6_K | 6.143 GB | very large, extremely low quality loss |
Llama3.1-8B-ShiningValiant2-Q8_0.gguf | Q8_0 | 7.954 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Llama3.1-8B-ShiningValiant2-GGUF --include "Llama3.1-8B-ShiningValiant2-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Llama3.1-8B-ShiningValiant2-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
- Downloads last month
- 284
Model tree for tensorblock/Llama3.1-8B-ShiningValiant2-GGUF
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct
Finetuned
ValiantLabs/Llama3.1-8B-ShiningValiant2
Datasets used to train tensorblock/Llama3.1-8B-ShiningValiant2-GGUF
Evaluation results
- acc on Winogrande (5-Shot)self-reported75.850
- acc on MMLU College Biology (5-Shot)self-reported68.750
- acc on MMLU College Biology (5-Shot)self-reported73.230
- acc on MMLU College Biology (5-Shot)self-reported46.000
- acc on MMLU College Biology (5-Shot)self-reported44.330
- acc on MMLU College Biology (5-Shot)self-reported53.190
- acc on MMLU College Biology (5-Shot)self-reported37.250
- acc on MMLU College Biology (5-Shot)self-reported42.380
- acc on MMLU College Biology (5-Shot)self-reported56.000
- acc on MMLU College Biology (5-Shot)self-reported63.000