morriszms's picture
Upload folder using huggingface_hub
e7f4315 verified
metadata
base_model: unsloth/Llama-3.2-1B-Instruct
language:
  - en
library_name: transformers
license: llama3.2
tags:
  - llama-3
  - llama
  - meta
  - facebook
  - unsloth
  - transformers
  - TensorBlock
  - GGUF
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

unsloth/Llama-3.2-1B-Instruct - GGUF

This repo contains GGUF format model files for unsloth/Llama-3.2-1B-Instruct.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023
Today Date: 08 Nov 2024

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Model file specification

Filename Quant type File Size Description
Llama-3.2-1B-Instruct-Q2_K.gguf Q2_K 0.541 GB smallest, significant quality loss - not recommended for most purposes
Llama-3.2-1B-Instruct-Q3_K_S.gguf Q3_K_S 0.598 GB very small, high quality loss
Llama-3.2-1B-Instruct-Q3_K_M.gguf Q3_K_M 0.643 GB very small, high quality loss
Llama-3.2-1B-Instruct-Q3_K_L.gguf Q3_K_L 0.682 GB small, substantial quality loss
Llama-3.2-1B-Instruct-Q4_0.gguf Q4_0 0.718 GB legacy; small, very high quality loss - prefer using Q3_K_M
Llama-3.2-1B-Instruct-Q4_K_S.gguf Q4_K_S 0.722 GB small, greater quality loss
Llama-3.2-1B-Instruct-Q4_K_M.gguf Q4_K_M 0.752 GB medium, balanced quality - recommended
Llama-3.2-1B-Instruct-Q5_0.gguf Q5_0 0.831 GB legacy; medium, balanced quality - prefer using Q4_K_M
Llama-3.2-1B-Instruct-Q5_K_S.gguf Q5_K_S 0.831 GB large, low quality loss - recommended
Llama-3.2-1B-Instruct-Q5_K_M.gguf Q5_K_M 0.849 GB large, very low quality loss - recommended
Llama-3.2-1B-Instruct-Q6_K.gguf Q6_K 0.952 GB very large, extremely low quality loss
Llama-3.2-1B-Instruct-Q8_0.gguf Q8_0 1.230 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Llama-3.2-1B-Instruct-GGUF --include "Llama-3.2-1B-Instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Llama-3.2-1B-Instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'