Edit model card

swin-tiny-patch4-window7-224-finetuned-azure-poc-img-classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2119
  • Accuracy: 0.9122

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5888 1.0 41 0.4436 0.8348
0.3118 2.0 82 0.3028 0.8692
0.2284 3.0 123 0.2879 0.8795
0.203 4.0 164 0.2368 0.8950
0.2254 5.0 205 0.2276 0.8985
0.1976 6.0 246 0.2339 0.8967
0.1603 7.0 287 0.2191 0.9036
0.1556 8.0 328 0.2249 0.9036
0.1488 9.0 369 0.2018 0.9071
0.158 10.0 410 0.2119 0.9122

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
3
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tdhcuong/swin-tiny-patch4-window7-224-finetuned-azure-poc-img-classification

Finetuned
(471)
this model

Evaluation results