output_toy
This model is a fine-tuned version of toy/model on the toy_graph dataset. It achieves the following results on the evaluation set:
- Loss: 1.2691
- Accuracy: 0.4525
- Transition Accuracy: 0.5634
- First Transition Accuracy: 0.88
- Multicode K: 1
- Dead Code Fraction/layer0: 0.9969
- Mse/layer0: 220380.4595
- Input Norm/layer0: 333.7717
- Output Norm/layer0: 12.9360
- Dead Code Fraction/layer1: 0.9535
- Mse/layer1: 132.7843
- Input Norm/layer1: 6.5450
- Output Norm/layer1: 13.1449
- Dead Code Fraction/layer2: 0.9349
- Mse/layer2: 365.9396
- Input Norm/layer2: 6.1370
- Output Norm/layer2: 18.3248
- Dead Code Fraction/layer3: 0.9819
- Mse/layer3: 415.9804
- Input Norm/layer3: 7.4097
- Output Norm/layer3: 18.4665
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1024
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 20000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Transition Accuracy | First Transition Accuracy | Multicode K | Dead Code Fraction/layer0 | Mse/layer0 | Input Norm/layer0 | Output Norm/layer0 | Dead Code Fraction/layer1 | Mse/layer1 | Input Norm/layer1 | Output Norm/layer1 | Dead Code Fraction/layer2 | Mse/layer2 | Input Norm/layer2 | Output Norm/layer2 | Dead Code Fraction/layer3 | Mse/layer3 | Input Norm/layer3 | Output Norm/layer3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.2465 | 0.03 | 500 | 1.8386 | 0.3565 | 0.3555 | 0.31 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.5981 | 0.05 | 1000 | 1.4652 | 0.4204 | 0.5015 | 0.58 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.3928 | 0.07 | 1500 | 1.3541 | 0.4378 | 0.555 | 0.79 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.3405 | 0.1 | 2000 | 1.3264 | 0.4427 | 0.5756 | 0.82 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.3189 | 0.12 | 2500 | 1.3187 | 0.4446 | 0.5576 | 0.86 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.308 | 0.15 | 3000 | 1.3064 | 0.4468 | 0.5573 | 0.82 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.3009 | 0.17 | 3500 | 1.2963 | 0.4493 | 0.5763 | 0.87 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2965 | 0.2 | 4000 | 1.2922 | 0.4494 | 0.5677 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2919 | 0.23 | 4500 | 1.2880 | 0.4499 | 0.5821 | 0.91 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2889 | 0.25 | 5000 | 1.2856 | 0.4501 | 0.56 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2855 | 0.28 | 5500 | 1.2816 | 0.4503 | 0.6016 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2828 | 0.3 | 6000 | 1.2844 | 0.4502 | 0.5734 | 0.87 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2805 | 0.33 | 6500 | 1.2777 | 0.4516 | 0.6084 | 0.95 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2793 | 0.35 | 7000 | 1.2796 | 0.4511 | 0.5681 | 0.93 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2785 | 0.38 | 7500 | 1.2748 | 0.4519 | 0.5919 | 0.95 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2764 | 0.4 | 8000 | 1.2767 | 0.4518 | 0.5760 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2763 | 0.42 | 8500 | 1.2801 | 0.4507 | 0.5827 | 0.94 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2755 | 0.45 | 9000 | 1.2755 | 0.4516 | 0.5765 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2746 | 0.47 | 9500 | 1.2736 | 0.4523 | 0.5865 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2734 | 0.5 | 10000 | 1.2740 | 0.4519 | 0.5779 | 0.91 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2732 | 0.53 | 10500 | 1.2744 | 0.4516 | 0.5879 | 0.89 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2723 | 0.55 | 11000 | 1.2690 | 0.4525 | 0.5811 | 0.89 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2712 | 0.57 | 11500 | 1.2705 | 0.4526 | 0.5779 | 0.93 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2716 | 0.6 | 12000 | 1.2701 | 0.4527 | 0.5760 | 0.89 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2708 | 0.62 | 12500 | 1.2716 | 0.4522 | 0.5485 | 0.95 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2705 | 0.65 | 13000 | 1.2676 | 0.4529 | 0.5734 | 0.93 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2696 | 0.68 | 13500 | 1.2717 | 0.4519 | 0.5994 | 0.91 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2687 | 0.7 | 14000 | 1.2687 | 0.4524 | 0.5756 | 0.9 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2685 | 0.72 | 14500 | 1.2709 | 0.4521 | 0.6127 | 0.89 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2685 | 0.75 | 15000 | 1.2706 | 0.4519 | 0.5873 | 0.91 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2675 | 0.78 | 15500 | 1.2691 | 0.4527 | 0.6365 | 0.96 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2677 | 0.8 | 16000 | 1.2686 | 0.4526 | 0.5589 | 0.93 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2676 | 0.82 | 16500 | 1.2639 | 0.4529 | 0.5940 | 0.89 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2662 | 0.85 | 17000 | 1.2655 | 0.4530 | 0.5955 | 0.94 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2666 | 0.88 | 17500 | 1.2636 | 0.4526 | 0.6013 | 0.96 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2664 | 0.9 | 18000 | 1.2681 | 0.4526 | 0.6034 | 0.96 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.266 | 0.93 | 18500 | 1.2624 | 0.4527 | 0.5839 | 0.88 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2653 | 0.95 | 19000 | 1.2688 | 0.4519 | 0.5837 | 0.92 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2654 | 0.97 | 19500 | 1.2619 | 0.4534 | 0.5973 | 0.92 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
1.2649 | 1.0 | 20000 | 1.2647 | 0.4525 | 0.59 | 0.93 | 1 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 |
Framework versions
- Transformers 4.28.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 2