mtasic85's picture
tokenizer training
661fcbb
metadata
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
language:
  - en
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - eo
  - es
  - et
  - eu
  - fa
  - ff
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gn
  - gu
  - ha
  - he
  - hi
  - hr
  - ht
  - hu
  - hy
  - id
  - ig
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lg
  - li
  - ln
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - ns
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - qu
  - rm
  - ro
  - ru
  - sa
  - si
  - sc
  - sd
  - sk
  - sl
  - so
  - sq
  - sr
  - ss
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tn
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - wo
  - xh
  - yi
  - yo
  - zu
datasets: []
tags:
  - litgpt
  - litdata

tangled-llama-f-128k-v0.1

logo

A pretrained language model based on the Llama model with about 134.2M parameters. This model has been trained on ??? (???) tokens from more than ??? (???) dataset rows.

This model isn't designed for immediate use but rather for Continued Pretraining and Finetuning on a downstream task. While it can handle a context length of up to 128K (131,072) tokens, it was pretrained with sequences of 512 (512) tokens.

The objective is to streamline the cognitive or reasoning core, eliminating any redundant knowledge from the model.

loss, val_loss

val_ppl

epoch

learning_rate

Pretrain

??? params ??? TFLOPS on 1x RTX 3090 24GB

Pretrain Evaluation

lm-evaluation-harness

litgpt evaluate --tasks 'hellaswag,gsm8k,truthfulqa_mc2,mmlu,winogrande,arc_challenge' --out_dir 'evaluate-quick/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'leaderboard' --out_dir 'evaluate-leaderboard/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'gsm8k,mathqa' --out_dir 'evaluate-math/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'mmlu,mmlu_pro' --out_dir 'evaluate-mmlu/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'arc_challenge,boolq,gpqa,hellaswag,openbookqa,piqa,truthfulqa_mc2,winogrande' --out_dir 'evaluate-reasoning/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/
litgpt evaluate --tasks 'wikitext,qasper' --out_dir 'evaluate-long/' --batch_size 4 --dtype 'bfloat16' out/pretrain/final/