tsec_vit_model / README.md
suredream's picture
Model save
1b05295 verified
|
raw
history blame
2.38 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: tsec_vit_model
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7689873417721519

tsec_vit_model

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4821
  • Accuracy: 0.7690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4963 0.9873 39 0.5699 0.6725
0.4959 2.0 79 0.5485 0.7152
0.4879 2.9873 118 0.4886 0.7690
0.5243 4.0 158 0.5133 0.7468
0.4654 4.9873 197 0.4927 0.7516
0.4776 6.0 237 0.4901 0.7642
0.4767 6.9873 276 0.4652 0.7816
0.4465 8.0 316 0.4795 0.7642
0.467 8.9873 355 0.4691 0.7484
0.4121 9.8734 390 0.4821 0.7690

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1