SpanMarker
This is a SpanMarker model trained on the DFKI-SLT/few-nerd dataset that can be used for Named Entity Recognition.
Model Details
Model Description
- Model Type: SpanMarker
- Maximum Sequence Length: 256 tokens
- Maximum Entity Length: 8 words
- Training Dataset: DFKI-SLT/few-nerd
Model Sources
- Repository: SpanMarker on GitHub
- Thesis: SpanMarker For Named Entity Recognition
Model Labels
Label | Examples |
---|---|
art-broadcastprogram | "Street Cents", "Corazones", "The Gale Storm Show : Oh , Susanna" |
art-film | "L'Atlantide", "Shawshank Redemption", "Bosch" |
art-music | "Champion Lover", "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Hollywood Studio Symphony" |
art-other | "Aphrodite of Milos", "The Today Show", "Venus de Milo" |
art-painting | "Production/Reproduction", "Cofiwch Dryweryn", "Touit" |
art-writtenart | "Time", "Imelda de ' Lambertazzi", "The Seven Year Itch" |
building-airport | "Sheremetyevo International Airport", "Luton Airport", "Newark Liberty International Airport" |
building-hospital | "Yeungnam University Hospital", "Memorial Sloan-Kettering Cancer Center", "Hokkaido University Hospital" |
building-hotel | "Radisson Blu Sea Plaza Hotel", "Flamingo Hotel", "The Standard Hotel" |
building-library | "British Library", "Berlin State Library", "Bayerische Staatsbibliothek" |
building-other | "Communiplex", "Henry Ford Museum", "Alpha Recording Studios" |
building-restaurant | "Carnegie Deli", "Trumbull", "Fatburger" |
building-sportsfacility | "Sports Center", "Boston Garden", "Glenn Warner Soccer Facility" |
building-theater | "Sanders Theatre", "Pittsburgh Civic Light Opera", "National Paris Opera" |
event-attack/battle/war/militaryconflict | "Vietnam War", "Jurist", "Easter Offensive" |
event-disaster | "1990s North Korean famine", "the 1912 North Mount Lyell Disaster", "1693 Sicily earthquake" |
event-election | "1982 Mitcham and Morden by-election", "Elections to the European Parliament", "March 1898 elections" |
event-other | "Eastwood Scoring Stage", "Union for a Popular Movement", "Masaryk Democratic Movement" |
event-protest | "French Revolution", "Iranian Constitutional Revolution", "Russian Revolution" |
event-sportsevent | "World Cup", "National Champions", "Stanley Cup" |
location-GPE | "Mediterranean Basin", "the Republic of Croatia", "Croatian" |
location-bodiesofwater | "Arthur Kill", "Atatürk Dam Lake", "Norfolk coast" |
location-island | "Staten Island", "new Samsat district", "Laccadives" |
location-mountain | "Miteirya Ridge", "Ruweisat Ridge", "Salamander Glacier" |
location-other | "Northern City Line", "Victoria line", "Cartuther" |
location-park | "Painted Desert Community Complex Historic District", "Gramercy Park", "Shenandoah National Park" |
location-road/railway/highway/transit | "NJT", "Newark-Elizabeth Rail Link", "Friern Barnet Road" |
organization-company | "Church 's Chicken", "Texas Chicken", "Dixy Chicken" |
organization-education | "Barnard College", "MIT", "Belfast Royal Academy and the Ulster College of Physical Education" |
organization-government/governmentagency | "Diet", "Supreme Court", "Congregazione dei Nobili" |
organization-media/newspaper | "Al Jazeera", "Clash", "TimeOut Melbourne" |
organization-other | "Defence Sector C", "4th Army", "IAEA" |
organization-politicalparty | "Al Wafa ' Islamic", "Shimpotō", "Kenseitō" |
organization-religion | "Jewish", "UPCUSA", "Christian" |
organization-showorganization | "Mr. Mister", "Lizzy", "Bochumer Symphoniker" |
organization-sportsleague | "NHL", "First Division", "China League One" |
organization-sportsteam | "Arsenal", "Luc Alphand Aventures", "Tottenham" |
other-astronomything | "Algol", "Zodiac", "`` Caput Larvae ''" |
other-award | "Order of the Republic of Guinea and Nigeria", "GCON", "Grand Commander of the Order of the Niger" |
other-biologything | "Amphiphysin", "BAR", "N-terminal lipid" |
other-chemicalthing | "sulfur", "uranium", "carbon dioxide" |
other-currency | "$", "Travancore Rupee", "lac crore" |
other-disease | "hypothyroidism", "bladder cancer", "French Dysentery Epidemic of 1779" |
other-educationaldegree | "BSc ( Hons ) in physics", "Master", "Bachelor" |
other-god | "El", "Raijin", "Fujin" |
other-language | "Latin", "English", "Breton-speaking" |
other-law | "United States Freedom Support Act", "Thirty Years ' Peace", "Leahy–Smith America Invents Act ( AIA" |
other-livingthing | "insects", "monkeys", "patchouli" |
other-medical | "pediatrician", "Pediatrics", "amitriptyline" |
person-actor | "Edmund Payne", "Tchéky Karyo", "Ellaline Terriss" |
person-artist/author | "Gaetano Donizett", "George Axelrod", "Hicks" |
person-athlete | "Tozawa", "Jaguar", "Neville" |
person-director | "Bob Swaim", "Frank Darabont", "Richard Quine" |
person-other | "Holden", "Richard Benson", "Campbell" |
person-politician | "Rivière", "Emeric", "William" |
person-scholar | "Stalmine", "Wurdack", "Stedman" |
person-soldier | "Krukenberg", "Joachim Ziegler", "Helmuth Weidling" |
product-airplane | "EC135T2 CPDS", "Spey-equipped FGR.2s", "Luton" |
product-car | "100EX", "Corvettes - GT1 C6R", "Phantom" |
product-food | "yakiniku", "V. labrusca", "red grape" |
product-game | "Airforce Delta", "Splinter Cell", "Hardcore RPG" |
product-other | "X11", "Fairbottom Bobs", "PDP-1" |
product-ship | "Essex", "HMS `` Chinkara ''", "Congress" |
product-software | "Wikipedia", "Apdf", "AmiPDF" |
product-train | "High Speed Trains", "Royal Scots Grey", "55022" |
product-weapon | "ZU-23-2M Wróbel", "AR-15 's", "ZU-23-2MR Wróbel II" |
Evaluation
Metrics
Label | Precision | Recall | F1 |
---|---|---|---|
all | 0.7034 | 0.7027 | 0.7031 |
art-broadcastprogram | 0.6024 | 0.5904 | 0.5963 |
art-film | 0.7761 | 0.7533 | 0.7645 |
art-music | 0.7825 | 0.7551 | 0.7685 |
art-other | 0.4193 | 0.3327 | 0.3710 |
art-painting | 0.5882 | 0.5263 | 0.5556 |
art-writtenart | 0.6819 | 0.6488 | 0.6649 |
building-airport | 0.8064 | 0.8352 | 0.8205 |
building-hospital | 0.7282 | 0.8022 | 0.7634 |
building-hotel | 0.7033 | 0.7245 | 0.7138 |
building-library | 0.7550 | 0.7380 | 0.7464 |
building-other | 0.5867 | 0.5840 | 0.5853 |
building-restaurant | 0.6205 | 0.5216 | 0.5667 |
building-sportsfacility | 0.6113 | 0.7976 | 0.6921 |
building-theater | 0.7060 | 0.7495 | 0.7271 |
event-attack/battle/war/militaryconflict | 0.7945 | 0.7395 | 0.7660 |
event-disaster | 0.5604 | 0.5604 | 0.5604 |
event-election | 0.4286 | 0.1484 | 0.2204 |
event-other | 0.4885 | 0.4400 | 0.4629 |
event-protest | 0.3798 | 0.4759 | 0.4225 |
event-sportsevent | 0.6198 | 0.6162 | 0.6180 |
location-GPE | 0.8157 | 0.8552 | 0.8350 |
location-bodiesofwater | 0.7268 | 0.7690 | 0.7473 |
location-island | 0.7504 | 0.6842 | 0.7158 |
location-mountain | 0.7352 | 0.7298 | 0.7325 |
location-other | 0.4427 | 0.3104 | 0.3649 |
location-park | 0.7153 | 0.6856 | 0.7001 |
location-road/railway/highway/transit | 0.7090 | 0.7324 | 0.7205 |
organization-company | 0.6963 | 0.7061 | 0.7012 |
organization-education | 0.7994 | 0.7986 | 0.7990 |
organization-government/governmentagency | 0.5524 | 0.4533 | 0.4980 |
organization-media/newspaper | 0.6513 | 0.6656 | 0.6584 |
organization-other | 0.5978 | 0.5375 | 0.5661 |
organization-politicalparty | 0.6793 | 0.7315 | 0.7044 |
organization-religion | 0.5575 | 0.6131 | 0.5840 |
organization-showorganization | 0.6035 | 0.5839 | 0.5935 |
organization-sportsleague | 0.6393 | 0.6610 | 0.6499 |
organization-sportsteam | 0.7259 | 0.7796 | 0.7518 |
other-astronomything | 0.7794 | 0.8024 | 0.7907 |
other-award | 0.7180 | 0.6649 | 0.6904 |
other-biologything | 0.6864 | 0.6238 | 0.6536 |
other-chemicalthing | 0.5688 | 0.6036 | 0.5856 |
other-currency | 0.6996 | 0.8423 | 0.7643 |
other-disease | 0.6591 | 0.7410 | 0.6977 |
other-educationaldegree | 0.6114 | 0.6198 | 0.6156 |
other-god | 0.6486 | 0.7181 | 0.6816 |
other-language | 0.6507 | 0.8313 | 0.7300 |
other-law | 0.6934 | 0.7331 | 0.7127 |
other-livingthing | 0.6019 | 0.6605 | 0.6298 |
other-medical | 0.5124 | 0.5214 | 0.5169 |
person-actor | 0.8384 | 0.8051 | 0.8214 |
person-artist/author | 0.7122 | 0.7531 | 0.7321 |
person-athlete | 0.8318 | 0.8422 | 0.8370 |
person-director | 0.7083 | 0.7365 | 0.7221 |
person-other | 0.6833 | 0.6737 | 0.6785 |
person-politician | 0.6807 | 0.6836 | 0.6822 |
person-scholar | 0.5397 | 0.5209 | 0.5301 |
person-soldier | 0.5053 | 0.5920 | 0.5452 |
product-airplane | 0.6617 | 0.6692 | 0.6654 |
product-car | 0.7313 | 0.7132 | 0.7222 |
product-food | 0.5787 | 0.5787 | 0.5787 |
product-game | 0.7364 | 0.7140 | 0.7250 |
product-other | 0.5567 | 0.4210 | 0.4795 |
product-ship | 0.6842 | 0.6842 | 0.6842 |
product-software | 0.6495 | 0.6648 | 0.6570 |
product-train | 0.5942 | 0.5924 | 0.5933 |
product-weapon | 0.6435 | 0.5353 | 0.5844 |
Uses
Direct Use for Inference
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_fewnerd_xl")
# Run inference
entities = model.predict("The Sunday Edition is a television programme broadcast on the ITV Network in the United Kingdom focusing on political interview and discussion, produced by ITV Productions.")
Downstream Use
You can finetune this model on your own dataset.
Click to expand
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("supreethrao/instructNER_fewnerd_xl")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("supreethrao/instructNER_fewnerd_xl-finetuned")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 1 | 24.4945 | 267 |
Entities per sentence | 0 | 2.5832 | 88 |
Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Framework Versions
- Python: 3.10.13
- SpanMarker: 1.5.0
- Transformers: 4.35.2
- PyTorch: 2.1.1
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
- Downloads last month
- 744
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train supreethrao/instructNER_fewnerd_xl
Evaluation results
- F1 on Unknowntest set self-reported0.703
- Precision on Unknowntest set self-reported0.703
- Recall on Unknowntest set self-reported0.703