metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
Quelles sont les règles en matière de garde d'enfants et de pension
alimentaire ?
- text: Comment se déroule une procédure de divorce ?
- text: >-
Quelles sont les principales difficultés rencontrées dans l'application de
cette loi ?
- text: Quels sont les régimes matrimoniaux possibles ?
- text: >-
Comment peut-on obtenir réparation pour un préjudice subi du fait d'une
décision administrative illégale ?
pipeline_tag: text-classification
inference: true
base_model: intfloat/multilingual-e5-small
model-index:
- name: SetFit with intfloat/multilingual-e5-small
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1
name: Accuracy
language:
- fr
- en
SetFit with intfloat/multilingual-e5-small
This is a SetFit model that can be used for Text Classification. This SetFit model uses intfloat/multilingual-e5-small as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: intfloat/multilingual-e5-small
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
independent |
|
follow_up |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("super-cinnamon/fewshot-followup-multi-e5")
# Run inference
preds = model("Comment se déroule une procédure de divorce ?")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 9.6184 | 16 |
Label | Training Sample Count |
---|---|
independent | 43 |
follow_up | 33 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0027 | 1 | 0.3915 | - |
0.1326 | 50 | 0.3193 | - |
0.2653 | 100 | 0.2252 | - |
0.3979 | 150 | 0.1141 | - |
0.5305 | 200 | 0.0197 | - |
0.6631 | 250 | 0.0019 | - |
0.7958 | 300 | 0.0021 | - |
0.9284 | 350 | 0.0002 | - |
1.0610 | 400 | 0.0008 | - |
1.1936 | 450 | 0.0005 | - |
1.3263 | 500 | 0.0002 | - |
1.4589 | 550 | 0.0002 | - |
1.5915 | 600 | 0.0007 | - |
1.7241 | 650 | 0.0001 | - |
1.8568 | 700 | 0.0003 | - |
1.9894 | 750 | 0.0002 | - |
2.1220 | 800 | 0.0001 | - |
2.2546 | 850 | 0.0002 | - |
2.3873 | 900 | 0.0 | - |
2.5199 | 950 | 0.0003 | - |
2.6525 | 1000 | 0.0001 | - |
2.7851 | 1050 | 0.0001 | - |
2.9178 | 1100 | 0.0001 | - |
3.0504 | 1150 | 0.0001 | - |
3.1830 | 1200 | 0.0001 | - |
3.3156 | 1250 | 0.0001 | - |
3.4483 | 1300 | 0.0001 | - |
3.5809 | 1350 | 0.0001 | - |
3.7135 | 1400 | 0.0 | - |
3.8462 | 1450 | 0.0 | - |
3.9788 | 1500 | 0.0 | - |
4.1114 | 1550 | 0.0 | - |
4.2440 | 1600 | 0.0001 | - |
4.3767 | 1650 | 0.0001 | - |
4.5093 | 1700 | 0.0001 | - |
4.6419 | 1750 | 0.0001 | - |
4.7745 | 1800 | 0.0 | - |
4.9072 | 1850 | 0.0001 | - |
5.0398 | 1900 | 0.0 | - |
5.1724 | 1950 | 0.0001 | - |
5.3050 | 2000 | 0.0 | - |
5.4377 | 2050 | 0.0001 | - |
5.5703 | 2100 | 0.0 | - |
5.7029 | 2150 | 0.0 | - |
5.8355 | 2200 | 0.0 | - |
5.9682 | 2250 | 0.0001 | - |
6.1008 | 2300 | 0.0001 | - |
6.2334 | 2350 | 0.0 | - |
6.3660 | 2400 | 0.0001 | - |
6.4987 | 2450 | 0.0 | - |
6.6313 | 2500 | 0.0 | - |
6.7639 | 2550 | 0.0 | - |
6.8966 | 2600 | 0.0 | - |
7.0292 | 2650 | 0.0 | - |
7.1618 | 2700 | 0.0 | - |
7.2944 | 2750 | 0.0 | - |
7.4271 | 2800 | 0.0001 | - |
7.5597 | 2850 | 0.0 | - |
7.6923 | 2900 | 0.0 | - |
7.8249 | 2950 | 0.0 | - |
7.9576 | 3000 | 0.0 | - |
8.0902 | 3050 | 0.0 | - |
8.2228 | 3100 | 0.0 | - |
8.3554 | 3150 | 0.0 | - |
8.4881 | 3200 | 0.0001 | - |
8.6207 | 3250 | 0.0 | - |
8.7533 | 3300 | 0.0 | - |
8.8859 | 3350 | 0.0 | - |
9.0186 | 3400 | 0.0001 | - |
9.1512 | 3450 | 0.0 | - |
9.2838 | 3500 | 0.0 | - |
9.4164 | 3550 | 0.0001 | - |
9.5491 | 3600 | 0.0 | - |
9.6817 | 3650 | 0.0001 | - |
9.8143 | 3700 | 0.0 | - |
9.9469 | 3750 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu118
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}