|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: |
|
- meta-llama/Llama-3.2-3B-Instruct |
|
pipeline_tag: text-generation |
|
tags: |
|
- text-generation-inference |
|
- unsloth |
|
- trl |
|
- sft |
|
- math |
|
- code |
|
datasets: |
|
- jeggers/competition_math |
|
library_name: transformers |
|
model-index: |
|
- name: Komodo-Llama-3.2-3B-v2-fp16 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 63.41 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 20.2 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 6.27 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 3.69 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 3.37 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 20.58 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=suayptalha/Komodo-Llama-3.2-3B-v2-fp16 |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
|
|
![Komodo-Logo](Komodo-Logo.jpg) |
|
|
|
This version of Komodo is a Llama-3.2-3B-Instruct finetuned model on jeggers/competition_math dataset to increase math performance of the base model. |
|
|
|
This model is 4bit-quantized. You should import it 8bit if you want to use 3B parameters! |
|
Make sure you installed 'bitsandbytes' library before import. |
|
|
|
Finetune system prompt: |
|
``` |
|
You are a highly intelligent and accurate mathematical assistant. |
|
You will solve mathematical problems step by step, explain your reasoning clearly, and provide concise, correct answers. |
|
When the solution requires multiple steps, detail each step systematically. |
|
``` |
|
|
|
You can use ChatML format! |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_suayptalha__Komodo-Llama-3.2-3B-v2-fp16) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |19.59| |
|
|IFEval (0-Shot) |63.41| |
|
|BBH (3-Shot) |20.20| |
|
|MATH Lvl 5 (4-Shot)| 6.27| |
|
|GPQA (0-shot) | 3.69| |
|
|MuSR (0-shot) | 3.37| |
|
|MMLU-PRO (5-shot) |20.58| |