whisper-small-tamil / README.md
steja's picture
Update README.md
eb8e84c
metadata
language:
  - ta
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
model-index:
  - name: whisper-small-tamil
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: ta_in
          split: test
        metrics:
          - name: Wer
            type: wer
            value: 15.021

whisper-small-tamil

This model is a fine-tuned version of openai/whisper-small on the google/fleurs dataset for Tamil. It achieves the following results on the evaluation set:

  • Loss: 0.42
  • Wer: 15.02

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0882 2.27 500 0.2674 16.7354
0.0026 11.76 1000 0.3508 15.3720
0.0012 17.64 1500 0.3920 15.6156
0.0009 23.53 2000 0.4076 15.4284
0.0002 29.41 2500 0.4268 15.0215

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2