111
#33
by
joey1895
- opened
- README.md +33 -147
- decoder/config.json +48 -57
- decoder/diffusion_pytorch_model.bf16.safetensors +0 -3
- decoder/diffusion_pytorch_model.safetensors +2 -2
- decoder_lite/config.json +0 -83
- decoder_lite/diffusion_pytorch_model.bf16.safetensors +0 -3
- decoder_lite/diffusion_pytorch_model.safetensors +0 -3
- model_index.json +4 -3
- scheduler/scheduler_config.json +1 -1
- text_encoder/config.json +2 -2
- text_encoder/model.bf16.safetensors +0 -3
- tokenizer/tokenizer.json +8 -1
- vqgan/config.json +2 -2
- vqgan/diffusion_pytorch_model.bf16.safetensors +0 -3
- vqgan/diffusion_pytorch_model.safetensors +2 -2
README.md
CHANGED
@@ -3,8 +3,6 @@ pipeline_tag: text-to-image
|
|
3 |
license: other
|
4 |
license_name: stable-cascade-nc-community
|
5 |
license_link: LICENSE
|
6 |
-
prior:
|
7 |
-
- stabilityai/stable-cascade-prior
|
8 |
---
|
9 |
|
10 |
# Stable Cascade
|
@@ -12,13 +10,13 @@ prior:
|
|
12 |
<!-- Provide a quick summary of what the model is/does. -->
|
13 |
<img src="figures/collage_1.jpg" width="800">
|
14 |
|
15 |
-
This model is built upon the [Würstchen](https://openreview.net/forum?id=gU58d5QeGv) architecture and its main
|
16 |
-
difference to other models like Stable Diffusion is that it is working at a much smaller latent space. Why is this
|
17 |
-
important? The smaller the latent space, the **faster** you can run inference and the **cheaper** the training becomes.
|
18 |
-
How small is the latent space? Stable Diffusion uses a compression factor of 8, resulting in a 1024x1024 image being
|
19 |
-
encoded to 128x128. Stable Cascade achieves a compression factor of 42, meaning that it is possible to encode a
|
20 |
-
1024x1024 image to 24x24, while maintaining crisp reconstructions. The text-conditional model is then trained in the
|
21 |
-
highly compressed latent space. Previous versions of this architecture, achieved a 16x cost reduction over Stable
|
22 |
Diffusion 1.5. <br> <br>
|
23 |
Therefore, this kind of model is well suited for usages where efficiency is important. Furthermore, all known extensions
|
24 |
like finetuning, LoRA, ControlNet, IP-Adapter, LCM etc. are possible with this method as well.
|
@@ -43,181 +41,69 @@ For research purposes, we recommend our `StableCascade` Github repository (https
|
|
43 |
### Model Overview
|
44 |
Stable Cascade consists of three models: Stage A, Stage B and Stage C, representing a cascade to generate images,
|
45 |
hence the name "Stable Cascade".
|
46 |
-
Stage A & B are used to compress images, similar to what the job of the VAE is in Stable Diffusion.
|
47 |
-
However, with this setup, a much higher compression of images can be achieved. While the Stable Diffusion models use a
|
48 |
-
spatial compression factor of 8, encoding an image with resolution of 1024 x 1024 to 128 x 128, Stable Cascade achieves
|
49 |
-
a compression factor of 42. This encodes a 1024 x 1024 image to 24 x 24, while being able to accurately decode the
|
50 |
-
image. This comes with the great benefit of cheaper training and inference. Furthermore, Stage C is responsible
|
51 |
for generating the small 24 x 24 latents given a text prompt. The following picture shows this visually.
|
52 |
|
53 |
<img src="figures/model-overview.jpg" width="600">
|
54 |
|
55 |
-
For this release, we are providing two checkpoints for Stage C, two for Stage B and one for Stage A. Stage C comes with
|
56 |
-
a 1 billion and 3.6 billion parameter version, but we highly recommend using the 3.6 billion version, as most work was
|
57 |
-
put into its finetuning. The two versions for Stage B amount to 700 million and 1.5 billion parameters. Both achieve
|
58 |
-
great results, however the 1.5 billion excels at reconstructing small and fine details. Therefore, you will achieve the
|
59 |
-
best results if you use the larger variant of each. Lastly, Stage A contains 20 million parameters and is fixed due to
|
60 |
its small size.
|
61 |
|
62 |
## Evaluation
|
63 |
<img height="300" src="figures/comparison.png"/>
|
64 |
-
According to our evaluation, Stable Cascade performs best in both prompt alignment and aesthetic quality in almost all
|
65 |
-
comparisons. The above picture shows the results from a human evaluation using a mix of parti-prompts (link) and
|
66 |
-
aesthetic prompts. Specifically, Stable Cascade (30 inference steps) was compared against Playground v2 (50 inference
|
67 |
steps), SDXL (50 inference steps), SDXL Turbo (1 inference step) and Würstchen v2 (30 inference steps).
|
68 |
|
69 |
## Code Example
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
If it is not possible to install PyTorch 2.2.0 or higher in your environment, the `StableCascadeDecoderPipeline` can be used on its own with the torch.float16 data type. You can download the full precision or bf16 variant weights for the pipeline and cast the weights to torch.float16.
|
74 |
|
75 |
```shell
|
76 |
-
pip install diffusers
|
77 |
```
|
78 |
|
79 |
```python
|
80 |
import torch
|
81 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16)
|
87 |
-
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16)
|
88 |
-
|
89 |
-
prior.enable_model_cpu_offload()
|
90 |
-
prior_output = prior(
|
91 |
-
prompt=prompt,
|
92 |
-
height=1024,
|
93 |
-
width=1024,
|
94 |
-
negative_prompt=negative_prompt,
|
95 |
-
guidance_scale=4.0,
|
96 |
-
num_images_per_prompt=1,
|
97 |
-
num_inference_steps=20
|
98 |
-
)
|
99 |
-
|
100 |
-
decoder.enable_model_cpu_offload()
|
101 |
-
decoder_output = decoder(
|
102 |
-
image_embeddings=prior_output.image_embeddings.to(torch.float16),
|
103 |
-
prompt=prompt,
|
104 |
-
negative_prompt=negative_prompt,
|
105 |
-
guidance_scale=0.0,
|
106 |
-
output_type="pil",
|
107 |
-
num_inference_steps=10
|
108 |
-
).images[0]
|
109 |
-
decoder_output.save("cascade.png")
|
110 |
-
```
|
111 |
-
|
112 |
-
### Using the Lite Version of the Stage B and Stage C models
|
113 |
-
|
114 |
-
```python
|
115 |
-
import torch
|
116 |
-
from diffusers import (
|
117 |
-
StableCascadeDecoderPipeline,
|
118 |
-
StableCascadePriorPipeline,
|
119 |
-
StableCascadeUNet,
|
120 |
-
)
|
121 |
-
|
122 |
-
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
|
123 |
-
negative_prompt = ""
|
124 |
-
|
125 |
-
prior_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade-prior", subfolder="prior_lite")
|
126 |
-
decoder_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade", subfolder="decoder_lite")
|
127 |
-
|
128 |
-
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", prior=prior_unet)
|
129 |
-
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", decoder=decoder_unet)
|
130 |
-
|
131 |
-
prior.enable_model_cpu_offload()
|
132 |
-
prior_output = prior(
|
133 |
-
prompt=prompt,
|
134 |
-
height=1024,
|
135 |
-
width=1024,
|
136 |
-
negative_prompt=negative_prompt,
|
137 |
-
guidance_scale=4.0,
|
138 |
-
num_images_per_prompt=1,
|
139 |
-
num_inference_steps=20
|
140 |
-
)
|
141 |
-
|
142 |
-
decoder.enable_model_cpu_offload()
|
143 |
-
decoder_output = decoder(
|
144 |
-
image_embeddings=prior_output.image_embeddings,
|
145 |
-
prompt=prompt,
|
146 |
-
negative_prompt=negative_prompt,
|
147 |
-
guidance_scale=0.0,
|
148 |
-
output_type="pil",
|
149 |
-
num_inference_steps=10
|
150 |
-
).images[0]
|
151 |
-
decoder_output.save("cascade.png")
|
152 |
-
```
|
153 |
-
|
154 |
-
### Loading original checkpoints with `from_single_file`
|
155 |
-
|
156 |
-
Loading the original format checkpoints is supported via `from_single_file` method in the StableCascadeUNet.
|
157 |
|
158 |
-
|
159 |
-
|
160 |
-
from diffusers import (
|
161 |
-
StableCascadeDecoderPipeline,
|
162 |
-
StableCascadePriorPipeline,
|
163 |
-
StableCascadeUNet,
|
164 |
-
)
|
165 |
|
166 |
-
prompt = "
|
167 |
negative_prompt = ""
|
168 |
|
169 |
-
prior_unet = StableCascadeUNet.from_single_file(
|
170 |
-
"https://huggingface.co/stabilityai/stable-cascade/resolve/main/stage_c_bf16.safetensors",
|
171 |
-
torch_dtype=torch.bfloat16
|
172 |
-
)
|
173 |
-
decoder_unet = StableCascadeUNet.from_single_file(
|
174 |
-
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors",
|
175 |
-
torch_dtype=torch.bfloat16
|
176 |
-
)
|
177 |
-
|
178 |
-
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", prior=prior_unet, torch_dtype=torch.bfloat16)
|
179 |
-
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", decoder=decoder_unet, torch_dtype=torch.bfloat16)
|
180 |
-
|
181 |
-
prior.enable_model_cpu_offload()
|
182 |
prior_output = prior(
|
183 |
prompt=prompt,
|
184 |
height=1024,
|
185 |
width=1024,
|
186 |
negative_prompt=negative_prompt,
|
187 |
guidance_scale=4.0,
|
188 |
-
num_images_per_prompt=
|
189 |
num_inference_steps=20
|
190 |
)
|
191 |
-
|
192 |
-
decoder.enable_model_cpu_offload()
|
193 |
decoder_output = decoder(
|
194 |
-
image_embeddings=prior_output.image_embeddings,
|
195 |
prompt=prompt,
|
196 |
negative_prompt=negative_prompt,
|
197 |
guidance_scale=0.0,
|
198 |
output_type="pil",
|
199 |
num_inference_steps=10
|
200 |
-
).images
|
201 |
-
decoder_output.save("cascade-single-file.png")
|
202 |
-
```
|
203 |
-
|
204 |
-
### Using the `StableCascadeCombinedPipeline`
|
205 |
-
|
206 |
-
```python
|
207 |
-
from diffusers import StableCascadeCombinedPipeline
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
|
212 |
-
pipe(
|
213 |
-
prompt=prompt,
|
214 |
-
negative_prompt="",
|
215 |
-
num_inference_steps=10,
|
216 |
-
prior_num_inference_steps=20,
|
217 |
-
prior_guidance_scale=3.0,
|
218 |
-
width=1024,
|
219 |
-
height=1024,
|
220 |
-
).images[0].save("cascade-combined.png")
|
221 |
```
|
222 |
|
223 |
## Uses
|
@@ -236,7 +122,7 @@ Excluded uses are described below.
|
|
236 |
|
237 |
### Out-of-Scope Use
|
238 |
|
239 |
-
The model was not trained to be factual or true representations of people or events,
|
240 |
and therefore using the model to generate such content is out-of-scope for the abilities of this model.
|
241 |
The model should not be used in any way that violates Stability AI's [Acceptable Use Policy](https://stability.ai/use-policy).
|
242 |
|
@@ -253,4 +139,4 @@ The model is intended for research purposes only.
|
|
253 |
|
254 |
## How to Get Started with the Model
|
255 |
|
256 |
-
Check out https://github.com/Stability-AI/StableCascade
|
|
|
3 |
license: other
|
4 |
license_name: stable-cascade-nc-community
|
5 |
license_link: LICENSE
|
|
|
|
|
6 |
---
|
7 |
|
8 |
# Stable Cascade
|
|
|
10 |
<!-- Provide a quick summary of what the model is/does. -->
|
11 |
<img src="figures/collage_1.jpg" width="800">
|
12 |
|
13 |
+
This model is built upon the [Würstchen](https://openreview.net/forum?id=gU58d5QeGv) architecture and its main
|
14 |
+
difference to other models like Stable Diffusion is that it is working at a much smaller latent space. Why is this
|
15 |
+
important? The smaller the latent space, the **faster** you can run inference and the **cheaper** the training becomes.
|
16 |
+
How small is the latent space? Stable Diffusion uses a compression factor of 8, resulting in a 1024x1024 image being
|
17 |
+
encoded to 128x128. Stable Cascade achieves a compression factor of 42, meaning that it is possible to encode a
|
18 |
+
1024x1024 image to 24x24, while maintaining crisp reconstructions. The text-conditional model is then trained in the
|
19 |
+
highly compressed latent space. Previous versions of this architecture, achieved a 16x cost reduction over Stable
|
20 |
Diffusion 1.5. <br> <br>
|
21 |
Therefore, this kind of model is well suited for usages where efficiency is important. Furthermore, all known extensions
|
22 |
like finetuning, LoRA, ControlNet, IP-Adapter, LCM etc. are possible with this method as well.
|
|
|
41 |
### Model Overview
|
42 |
Stable Cascade consists of three models: Stage A, Stage B and Stage C, representing a cascade to generate images,
|
43 |
hence the name "Stable Cascade".
|
44 |
+
Stage A & B are used to compress images, similar to what the job of the VAE is in Stable Diffusion.
|
45 |
+
However, with this setup, a much higher compression of images can be achieved. While the Stable Diffusion models use a
|
46 |
+
spatial compression factor of 8, encoding an image with resolution of 1024 x 1024 to 128 x 128, Stable Cascade achieves
|
47 |
+
a compression factor of 42. This encodes a 1024 x 1024 image to 24 x 24, while being able to accurately decode the
|
48 |
+
image. This comes with the great benefit of cheaper training and inference. Furthermore, Stage C is responsible
|
49 |
for generating the small 24 x 24 latents given a text prompt. The following picture shows this visually.
|
50 |
|
51 |
<img src="figures/model-overview.jpg" width="600">
|
52 |
|
53 |
+
For this release, we are providing two checkpoints for Stage C, two for Stage B and one for Stage A. Stage C comes with
|
54 |
+
a 1 billion and 3.6 billion parameter version, but we highly recommend using the 3.6 billion version, as most work was
|
55 |
+
put into its finetuning. The two versions for Stage B amount to 700 million and 1.5 billion parameters. Both achieve
|
56 |
+
great results, however the 1.5 billion excels at reconstructing small and fine details. Therefore, you will achieve the
|
57 |
+
best results if you use the larger variant of each. Lastly, Stage A contains 20 million parameters and is fixed due to
|
58 |
its small size.
|
59 |
|
60 |
## Evaluation
|
61 |
<img height="300" src="figures/comparison.png"/>
|
62 |
+
According to our evaluation, Stable Cascade performs best in both prompt alignment and aesthetic quality in almost all
|
63 |
+
comparisons. The above picture shows the results from a human evaluation using a mix of parti-prompts (link) and
|
64 |
+
aesthetic prompts. Specifically, Stable Cascade (30 inference steps) was compared against Playground v2 (50 inference
|
65 |
steps), SDXL (50 inference steps), SDXL Turbo (1 inference step) and Würstchen v2 (30 inference steps).
|
66 |
|
67 |
## Code Example
|
68 |
|
69 |
+
**⚠️ Important**: For the code below to work, you have to install `diffusers` from this branch while the PR is WIP.
|
|
|
|
|
70 |
|
71 |
```shell
|
72 |
+
pip install git+https://github.com/kashif/diffusers.git@wuerstchen-v3
|
73 |
```
|
74 |
|
75 |
```python
|
76 |
import torch
|
77 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
78 |
|
79 |
+
device = "cuda"
|
80 |
+
num_images_per_prompt = 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device)
|
83 |
+
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to(device)
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
prompt = "Anthropomorphic cat dressed as a pilot"
|
86 |
negative_prompt = ""
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
prior_output = prior(
|
89 |
prompt=prompt,
|
90 |
height=1024,
|
91 |
width=1024,
|
92 |
negative_prompt=negative_prompt,
|
93 |
guidance_scale=4.0,
|
94 |
+
num_images_per_prompt=num_images_per_prompt,
|
95 |
num_inference_steps=20
|
96 |
)
|
|
|
|
|
97 |
decoder_output = decoder(
|
98 |
+
image_embeddings=prior_output.image_embeddings.half(),
|
99 |
prompt=prompt,
|
100 |
negative_prompt=negative_prompt,
|
101 |
guidance_scale=0.0,
|
102 |
output_type="pil",
|
103 |
num_inference_steps=10
|
104 |
+
).images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
#Now decoder_output is a list with your PIL images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
```
|
108 |
|
109 |
## Uses
|
|
|
122 |
|
123 |
### Out-of-Scope Use
|
124 |
|
125 |
+
The model was not trained to be factual or true representations of people or events,
|
126 |
and therefore using the model to generate such content is out-of-scope for the abilities of this model.
|
127 |
The model should not be used in any way that violates Stability AI's [Acceptable Use Policy](https://stability.ai/use-policy).
|
128 |
|
|
|
139 |
|
140 |
## How to Get Started with the Model
|
141 |
|
142 |
+
Check out https://github.com/Stability-AI/StableCascade
|
decoder/config.json
CHANGED
@@ -1,83 +1,74 @@
|
|
1 |
{
|
2 |
-
"_class_name": "
|
3 |
-
"_diffusers_version": "0.
|
4 |
-
"
|
5 |
-
|
6 |
-
640,
|
7 |
-
1280,
|
8 |
-
1280
|
9 |
-
],
|
10 |
-
"block_types_per_layer": [
|
11 |
[
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
],
|
15 |
[
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
[
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
23 |
],
|
24 |
[
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
28 |
]
|
29 |
],
|
30 |
-
"
|
31 |
-
"
|
32 |
-
"
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
"down_num_layers_per_block": [
|
42 |
-
2,
|
43 |
-
6,
|
44 |
-
28,
|
45 |
-
6
|
46 |
],
|
|
|
|
|
|
|
|
|
47 |
"dropout": [
|
48 |
0,
|
49 |
0,
|
50 |
0.1,
|
51 |
0.1
|
52 |
],
|
53 |
-
"effnet_in_channels": 16,
|
54 |
-
"in_channels": 4,
|
55 |
"kernel_size": 3,
|
56 |
-
"
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
20,
|
60 |
20
|
61 |
],
|
62 |
-
"out_channels": 4,
|
63 |
"patch_size": 2,
|
64 |
-
"pixel_mapper_in_channels": 3,
|
65 |
"self_attn": true,
|
66 |
"switch_level": null,
|
67 |
-
"
|
68 |
"sca"
|
69 |
-
],
|
70 |
-
"timestep_ratio_embedding_dim": 64,
|
71 |
-
"up_blocks_repeat_mappers": [
|
72 |
-
3,
|
73 |
-
3,
|
74 |
-
2,
|
75 |
-
2
|
76 |
-
],
|
77 |
-
"up_num_layers_per_block": [
|
78 |
-
6,
|
79 |
-
28,
|
80 |
-
6,
|
81 |
-
2
|
82 |
]
|
83 |
}
|
|
|
1 |
{
|
2 |
+
"_class_name": "StableCascadeUnet",
|
3 |
+
"_diffusers_version": "0.26.0.dev0",
|
4 |
+
"_name_or_path": "StableCascade/decoder",
|
5 |
+
"block_repeat": [
|
|
|
|
|
|
|
|
|
|
|
6 |
[
|
7 |
+
1,
|
8 |
+
1,
|
9 |
+
1,
|
10 |
+
1
|
11 |
],
|
12 |
[
|
13 |
+
3,
|
14 |
+
3,
|
15 |
+
2,
|
16 |
+
2
|
17 |
+
]
|
18 |
+
],
|
19 |
+
"blocks": [
|
20 |
[
|
21 |
+
2,
|
22 |
+
6,
|
23 |
+
28,
|
24 |
+
6
|
25 |
],
|
26 |
[
|
27 |
+
6,
|
28 |
+
28,
|
29 |
+
6,
|
30 |
+
2
|
31 |
]
|
32 |
],
|
33 |
+
"c_clip_img": null,
|
34 |
+
"c_clip_seq": 4,
|
35 |
+
"c_clip_text": null,
|
36 |
+
"c_clip_text_pooled": 1280,
|
37 |
+
"c_cond": 1280,
|
38 |
+
"c_effnet": 16,
|
39 |
+
"c_hidden": [
|
40 |
+
320,
|
41 |
+
640,
|
42 |
+
1280,
|
43 |
+
1280
|
|
|
|
|
|
|
|
|
|
|
44 |
],
|
45 |
+
"c_in": 4,
|
46 |
+
"c_out": 4,
|
47 |
+
"c_pixels": 3,
|
48 |
+
"c_r": 64,
|
49 |
"dropout": [
|
50 |
0,
|
51 |
0,
|
52 |
0.1,
|
53 |
0.1
|
54 |
],
|
|
|
|
|
55 |
"kernel_size": 3,
|
56 |
+
"level_config": [
|
57 |
+
"CT",
|
58 |
+
"CT",
|
59 |
+
"CTA",
|
60 |
+
"CTA"
|
61 |
+
],
|
62 |
+
"nhead": [
|
63 |
+
-1,
|
64 |
+
-1,
|
65 |
20,
|
66 |
20
|
67 |
],
|
|
|
68 |
"patch_size": 2,
|
|
|
69 |
"self_attn": true,
|
70 |
"switch_level": null,
|
71 |
+
"t_conds": [
|
72 |
"sca"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
]
|
74 |
}
|
decoder/diffusion_pytorch_model.bf16.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1f9575dfa6c2535ad65733d6257d17a7b1e1b54b7eafb251ce9556595f3bc0c9
|
3 |
-
size 3126071088
|
|
|
|
|
|
|
|
decoder/diffusion_pytorch_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f9575dfa6c2535ad65733d6257d17a7b1e1b54b7eafb251ce9556595f3bc0c9
|
3 |
+
size 3126071088
|
decoder_lite/config.json
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_class_name": "StableCascadeUNet",
|
3 |
-
"_diffusers_version": "0.27.0.dev0",
|
4 |
-
"block_out_channels": [
|
5 |
-
320,
|
6 |
-
576,
|
7 |
-
1152,
|
8 |
-
1152
|
9 |
-
],
|
10 |
-
"block_types_per_layer": [
|
11 |
-
[
|
12 |
-
"SDCascadeResBlock",
|
13 |
-
"SDCascadeTimestepBlock"
|
14 |
-
],
|
15 |
-
[
|
16 |
-
"SDCascadeResBlock",
|
17 |
-
"SDCascadeTimestepBlock"
|
18 |
-
],
|
19 |
-
[
|
20 |
-
"SDCascadeResBlock",
|
21 |
-
"SDCascadeTimestepBlock",
|
22 |
-
"SDCascadeAttnBlock"
|
23 |
-
],
|
24 |
-
[
|
25 |
-
"SDCascadeResBlock",
|
26 |
-
"SDCascadeTimestepBlock",
|
27 |
-
"SDCascadeAttnBlock"
|
28 |
-
]
|
29 |
-
],
|
30 |
-
"clip_image_in_channels": null,
|
31 |
-
"clip_seq": 4,
|
32 |
-
"clip_text_in_channels": null,
|
33 |
-
"clip_text_pooled_in_channels": 1280,
|
34 |
-
"conditioning_dim": 1280,
|
35 |
-
"down_blocks_repeat_mappers": [
|
36 |
-
1,
|
37 |
-
1,
|
38 |
-
1,
|
39 |
-
1
|
40 |
-
],
|
41 |
-
"down_num_layers_per_block": [
|
42 |
-
2,
|
43 |
-
4,
|
44 |
-
14,
|
45 |
-
4
|
46 |
-
],
|
47 |
-
"dropout": [
|
48 |
-
0,
|
49 |
-
0,
|
50 |
-
0.1,
|
51 |
-
0.1
|
52 |
-
],
|
53 |
-
"effnet_in_channels": 16,
|
54 |
-
"in_channels": 4,
|
55 |
-
"kernel_size": 3,
|
56 |
-
"num_attention_heads": [
|
57 |
-
0,
|
58 |
-
9,
|
59 |
-
18,
|
60 |
-
18
|
61 |
-
],
|
62 |
-
"out_channels": 4,
|
63 |
-
"patch_size": 2,
|
64 |
-
"pixel_mapper_in_channels": 3,
|
65 |
-
"self_attn": true,
|
66 |
-
"switch_level": null,
|
67 |
-
"timestep_conditioning_type": [
|
68 |
-
"sca"
|
69 |
-
],
|
70 |
-
"timestep_ratio_embedding_dim": 64,
|
71 |
-
"up_blocks_repeat_mappers": [
|
72 |
-
2,
|
73 |
-
2,
|
74 |
-
2,
|
75 |
-
2
|
76 |
-
],
|
77 |
-
"up_num_layers_per_block": [
|
78 |
-
4,
|
79 |
-
14,
|
80 |
-
4,
|
81 |
-
2
|
82 |
-
]
|
83 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
decoder_lite/diffusion_pytorch_model.bf16.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cdf99f9972e67abfbffcd9146be83ae0fd7307789619cefa4cf4a54cd62181e6
|
3 |
-
size 1399047416
|
|
|
|
|
|
|
|
decoder_lite/diffusion_pytorch_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7dcb3fc8b1e3f2a1756503472043a7d6810003a418b60b08674633b20b452ffb
|
3 |
-
size 2797989648
|
|
|
|
|
|
|
|
model_index.json
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
{
|
2 |
"_class_name": "StableCascadeDecoderPipeline",
|
3 |
-
"_diffusers_version": "0.
|
|
|
4 |
"decoder": [
|
5 |
-
"
|
6 |
-
"
|
7 |
],
|
8 |
"latent_dim_scale": 10.67,
|
9 |
"scheduler": [
|
|
|
1 |
{
|
2 |
"_class_name": "StableCascadeDecoderPipeline",
|
3 |
+
"_diffusers_version": "0.26.0.dev0",
|
4 |
+
"_name_or_path": "StableCascade/",
|
5 |
"decoder": [
|
6 |
+
"stable_cascade",
|
7 |
+
"StableCascadeUnet"
|
8 |
],
|
9 |
"latent_dim_scale": 10.67,
|
10 |
"scheduler": [
|
scheduler/scheduler_config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"_class_name": "DDPMWuerstchenScheduler",
|
3 |
-
"_diffusers_version": "0.
|
4 |
"s": 0.008,
|
5 |
"scaler": 1.0
|
6 |
}
|
|
|
1 |
{
|
2 |
"_class_name": "DDPMWuerstchenScheduler",
|
3 |
+
"_diffusers_version": "0.26.0.dev0",
|
4 |
"s": 0.008,
|
5 |
"scaler": 1.0
|
6 |
}
|
text_encoder/config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"CLIPTextModelWithProjection"
|
5 |
],
|
@@ -20,6 +20,6 @@
|
|
20 |
"pad_token_id": 1,
|
21 |
"projection_dim": 1280,
|
22 |
"torch_dtype": "bfloat16",
|
23 |
-
"transformers_version": "4.38.
|
24 |
"vocab_size": 49408
|
25 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "StableCascade/text_encoder",
|
3 |
"architectures": [
|
4 |
"CLIPTextModelWithProjection"
|
5 |
],
|
|
|
20 |
"pad_token_id": 1,
|
21 |
"projection_dim": 1280,
|
22 |
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.38.0.dev0",
|
24 |
"vocab_size": 49408
|
25 |
}
|
text_encoder/model.bf16.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:260e0127aca3c89db813637ae659ebb822cb07af71fedc16cbd980e9518dfdcd
|
3 |
-
size 1389382688
|
|
|
|
|
|
|
|
tokenizer/tokenizer.json
CHANGED
@@ -1,7 +1,14 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
"truncation": null,
|
4 |
-
"padding":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 49406,
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
"truncation": null,
|
4 |
+
"padding": {
|
5 |
+
"strategy": "BatchLongest",
|
6 |
+
"direction": "Right",
|
7 |
+
"pad_to_multiple_of": null,
|
8 |
+
"pad_id": 49407,
|
9 |
+
"pad_type_id": 0,
|
10 |
+
"pad_token": "<|endoftext|>"
|
11 |
+
},
|
12 |
"added_tokens": [
|
13 |
{
|
14 |
"id": 49406,
|
vqgan/config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"_class_name": "PaellaVQModel",
|
3 |
-
"_diffusers_version": "0.
|
4 |
-
"_name_or_path": "
|
5 |
"bottleneck_blocks": 12,
|
6 |
"embed_dim": 384,
|
7 |
"in_channels": 3,
|
|
|
1 |
{
|
2 |
"_class_name": "PaellaVQModel",
|
3 |
+
"_diffusers_version": "0.26.0.dev0",
|
4 |
+
"_name_or_path": "StableCascade/vqgan",
|
5 |
"bottleneck_blocks": 12,
|
6 |
"embed_dim": 384,
|
7 |
"in_channels": 3,
|
vqgan/diffusion_pytorch_model.bf16.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:3ac32fab5177329dac907b2480c8c00aeefc712dfd92c2d52263a9c64b426b26
|
3 |
-
size 36825828
|
|
|
|
|
|
|
|
vqgan/diffusion_pytorch_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ac32fab5177329dac907b2480c8c00aeefc712dfd92c2d52263a9c64b426b26
|
3 |
+
size 36825828
|