Any Comfy workflow ?
Would be nice to have
+1
gradio
I'm not very experienced with Python but I could make it work like this:
=== requirements1.txt ===
-i https://download.pytorch.org/whl/cu121
torch
torchvision
torchaudio
=== requirements2.txt ===
einops
ninja
packaging
huggingface_hub
stable_audio_tools
=== infer.py ===
import torch
import torchaudio
from einops import rearrange
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
device = "cuda" if torch.cuda.is_available() else "cpu"
# Download model
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
model = model.to(device)
# Set up text and timing conditioning
conditioning = [{
"prompt": "128 BPM dnb drums loop",
"seconds_start": 0,
"seconds_total": 30
}]
# Generate stereo audio
output = generate_diffusion_cond(
model,
steps=100,
cfg_scale=7,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device,
# force seed because of error on Win11 64 bits
seed=123456
)
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
# Peak normalize, clip, convert to int16, and save to file
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
torchaudio.save("output.wav", output, sample_rate)
Then type
python -m venv venv
.\venv\Scripts\activate
pip install -r requirements1.txt
pip install -r requirements2.txt
(will take a while)
Then authenticate to your Hugging face account with a token (create token at https://huggingface.co/settings/tokens)
huggingface-cli login
(paste your token and follow the instructions, token will not be outputed when pasted)
Then
python .\infer.py
Edit infer.py as needed.
Change prompt and seed if necessary.
seed=123456
Edit infer.py as needed.
Change prompt and seed if necessary.
The seed doesnt work like that on windows, you will need to change line 138 in generation.py
"myenv/Lib/site-Packages/stable_audio_tools/inference/generation.py"
seed = 12345
change the seed in "myenv/Lib/site-Packages/stable_audio_tools/inference/generation.py"
from
seed = seed if seed != -1 else np.random.randint(0, 232 - 1)
to
seed = seed if seed != -1 else np.random.randint(0, 232 - 1,dtype=np.int64)
is also worked on my device.