metadata
base_model: srikarvar/fine_tuned_model_5
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:560
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
The `num_steps` parameter is employed to indicate the quantity of steps
when preparing the recipe.
sentences:
- >-
The `num_steps` parameter is used to specify the number of steps when
preparing the recipe.
- >-
The `rename_fields` function creates a new form with fields renamed to
provided names.
- >-
The main difference between a ProductList and an InventoryList is that a
ProductList provides random access to the items, while an InventoryList
updates progressively as you browse the list.
- source_sentence: >-
The "extract" function creates a portion of the data without making a
copy, with the possibility to indicate an offset and size.
sentences:
- 'Sure! Here''s an example:'
- >-
You can create a sauce by combining the ingredients and using the
`with_stirring()` function to mix them evenly.
- >-
The "extract" function computes a zero-copy subset of the data, with the
option to specify an offset and length.
- source_sentence: The `iterate_folder` function cycles through files inside a folder.
sentences:
- >-
You can find it in the latest version of the user manual. Click on the
provided link to access the main version.
- The `iterate_folder` function iterates over files within a folder.
- It is a guide on how to process any type of module.
- source_sentence: >-
Technical descriptions of the framework’s APIs and modules can be found in
the reference section.
sentences:
- >-
The `to_spreadsheet` method in the Plant class is used to convert the
PlantData to a `SpreadsheetRow` or `SpreadsheetTable`.
- >-
Yes, there are technical details available in the reference section that
explain how the framework’s APIs and modules work.
- >-
The `storage_dir` parameter is used to specify the directory to store
ingredients.
- source_sentence: >-
Once you have completed your library script, you can generate a library
card and submit it to the server.
sentences:
- >-
Once your library script is ready, you can create a library card and
upload it to the server.
- It replaces the document's header.
- >-
Many product formats are supported, including CSV, XML, JSON, image, and
video files.
model-index:
- name: SentenceTransformer based on srikarvar/fine_tuned_model_5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: e5 cogcache small refined
type: e5-cogcache-small-refined
metrics:
- type: cosine_accuracy@1
value: 0.9821428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9821428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9821428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3273809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9821428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9821428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9898335099655963
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9866071428571429
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9866071428571429
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9821428571428571
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9821428571428571
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9821428571428571
name: Dot Precision@1
- type: dot_precision@3
value: 0.3273809523809524
name: Dot Precision@3
- type: dot_precision@5
value: 0.19999999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.9821428571428571
name: Dot Recall@1
- type: dot_recall@3
value: 0.9821428571428571
name: Dot Recall@3
- type: dot_recall@5
value: 1
name: Dot Recall@5
- type: dot_recall@10
value: 1
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9898335099655963
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9866071428571429
name: Dot Mrr@10
- type: dot_map@100
value: 0.9866071428571429
name: Dot Map@100
- type: cosine_accuracy@1
value: 0.9821428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9821428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9821428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3273809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9821428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9821428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 1
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9898335099655963
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9866071428571429
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9866071428571429
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9821428571428571
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9821428571428571
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9821428571428571
name: Dot Precision@1
- type: dot_precision@3
value: 0.3273809523809524
name: Dot Precision@3
- type: dot_precision@5
value: 0.19999999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.9821428571428571
name: Dot Recall@1
- type: dot_recall@3
value: 0.9821428571428571
name: Dot Recall@3
- type: dot_recall@5
value: 1
name: Dot Recall@5
- type: dot_recall@10
value: 1
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9898335099655963
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9866071428571429
name: Dot Mrr@10
- type: dot_map@100
value: 0.9866071428571429
name: Dot Map@100
SentenceTransformer based on srikarvar/fine_tuned_model_5
This is a sentence-transformers model finetuned from srikarvar/fine_tuned_model_5 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: srikarvar/fine_tuned_model_5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_10")
# Run inference
sentences = [
'Once you have completed your library script, you can generate a library card and submit it to the server.',
'Once your library script is ready, you can create a library card and upload it to the server.',
"It replaces the document's header.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
e5-cogcache-small-refined
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9821 |
cosine_accuracy@3 | 0.9821 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9821 |
cosine_precision@3 | 0.3274 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9821 |
cosine_recall@3 | 0.9821 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9898 |
cosine_mrr@10 | 0.9866 |
cosine_map@100 | 0.9866 |
dot_accuracy@1 | 0.9821 |
dot_accuracy@3 | 0.9821 |
dot_accuracy@5 | 1.0 |
dot_accuracy@10 | 1.0 |
dot_precision@1 | 0.9821 |
dot_precision@3 | 0.3274 |
dot_precision@5 | 0.2 |
dot_precision@10 | 0.1 |
dot_recall@1 | 0.9821 |
dot_recall@3 | 0.9821 |
dot_recall@5 | 1.0 |
dot_recall@10 | 1.0 |
dot_ndcg@10 | 0.9898 |
dot_mrr@10 | 0.9866 |
dot_map@100 | 0.9866 |
Information Retrieval
- Dataset:
e5-cogcache-small-refined
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.9821 |
cosine_accuracy@3 | 0.9821 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.9821 |
cosine_precision@3 | 0.3274 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.9821 |
cosine_recall@3 | 0.9821 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9898 |
cosine_mrr@10 | 0.9866 |
cosine_map@100 | 0.9866 |
dot_accuracy@1 | 0.9821 |
dot_accuracy@3 | 0.9821 |
dot_accuracy@5 | 1.0 |
dot_accuracy@10 | 1.0 |
dot_precision@1 | 0.9821 |
dot_precision@3 | 0.3274 |
dot_precision@5 | 0.2 |
dot_precision@10 | 0.1 |
dot_recall@1 | 0.9821 |
dot_recall@3 | 0.9821 |
dot_recall@5 | 1.0 |
dot_recall@10 | 1.0 |
dot_ndcg@10 | 0.9898 |
dot_mrr@10 | 0.9866 |
dot_map@100 | 0.9866 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 560 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 560 samples:
anchor positive type string string details - min: 9 tokens
- mean: 30.23 tokens
- max: 98 tokens
- min: 8 tokens
- mean: 30.06 tokens
- max: 98 tokens
- Samples:
anchor positive It retrieves items from a list.
It selects items from a list.
The goal of seasoning a cast iron pan is to create a non-stick surface and protect it from rust.
The purpose of seasoning a cast iron pan is to create a non-stick surface and prevent rust.
The Spark manual covers topics like data analysis, machine learning, graph processing, and stream processing.
The Spark documentation covers topics such as data analysis, machine learning, graph processing, and stream processing.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 1e-05warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | e5-cogcache-small-refined_cosine_map@100 |
---|---|---|---|
0 | 0 | - | 0.9777 |
0.3125 | 10 | 0.0118 | - |
0.625 | 20 | 0.0025 | - |
0.9375 | 30 | 0.006 | - |
1.0 | 32 | - | 0.9866 |
1.25 | 40 | 0.0008 | - |
1.5625 | 50 | 0.0005 | - |
1.875 | 60 | 0.0011 | - |
2.0 | 64 | - | 0.9866 |
2.1875 | 70 | 0.0006 | - |
2.5 | 80 | 0.0003 | - |
2.8125 | 90 | 0.001 | - |
3.0 | 96 | - | 0.9866 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}