uaspeech-whisper-lg-3-Nov3
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1246
- Wer: 15.4002
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.7741 | 0.0719 | 100 | 0.6537 | 58.1245 |
0.4975 | 0.1437 | 200 | 0.4079 | 39.8141 |
0.3739 | 0.2156 | 300 | 0.3398 | 33.3872 |
0.3037 | 0.2875 | 400 | 0.2941 | 30.2344 |
0.2783 | 0.3593 | 500 | 0.2456 | 26.1116 |
0.2568 | 0.4312 | 600 | 0.2270 | 25.1011 |
0.2012 | 0.5031 | 700 | 0.2372 | 25.9903 |
0.2139 | 0.5749 | 800 | 0.1828 | 21.3015 |
0.1649 | 0.6468 | 900 | 0.1750 | 19.7656 |
0.149 | 0.7186 | 1000 | 0.1640 | 19.4826 |
0.146 | 0.7905 | 1100 | 0.1444 | 17.5829 |
0.1424 | 0.8624 | 1200 | 0.1305 | 15.5214 |
0.116 | 0.9342 | 1300 | 0.1294 | 16.3703 |
0.121 | 1.0061 | 1400 | 0.1210 | 16.1277 |
0.0751 | 1.0780 | 1500 | 0.1246 | 15.4002 |
Framework versions
- Transformers 4.43.4
- Pytorch 2.4.1
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Model tree for sqrk/uaspeech-whisper-lg-3-Nov3
Base model
openai/whisper-large-v3