Sep26-Mixat-whisper-lg-3-translation
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7932
- Wer: 42.6353
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.8768 | 0.4292 | 100 | 0.4849 | 38.3799 |
0.5884 | 0.8584 | 200 | 0.4886 | 37.6625 |
0.4802 | 1.2876 | 300 | 0.4899 | 42.7189 |
0.4519 | 1.7167 | 400 | 0.5002 | 42.3724 |
0.4173 | 2.1459 | 500 | 0.5083 | 43.9228 |
0.3271 | 2.5751 | 600 | 0.5200 | 41.2447 |
0.3292 | 3.0043 | 700 | 0.5020 | 41.7533 |
0.1963 | 3.4335 | 800 | 0.5670 | 43.8933 |
0.2076 | 3.8627 | 900 | 0.5536 | 42.9842 |
0.1413 | 4.2918 | 1000 | 0.5866 | 42.1439 |
0.1194 | 4.7210 | 1100 | 0.6091 | 43.5739 |
0.0994 | 5.1502 | 1200 | 0.6991 | 42.6722 |
0.067 | 5.5794 | 1300 | 0.6573 | 44.6869 |
0.0699 | 6.0086 | 1400 | 0.6579 | 44.4363 |
0.0386 | 6.4378 | 1500 | 0.7268 | 46.2249 |
0.0414 | 6.8670 | 1600 | 0.7219 | 44.3527 |
0.0334 | 7.2961 | 1700 | 0.7521 | 45.5763 |
0.0308 | 7.7253 | 1800 | 0.7932 | 42.6353 |
Framework versions
- Transformers 4.43.4
- Pytorch 2.4.1
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 12
Model tree for sqrk/Sep26-Mixat-whisper-lg-3-translation
Base model
openai/whisper-large-v3