Spaces:
Running
Running
File size: 8,483 Bytes
6d1366a 41cc459 6d1366a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import gc
import gradio as gr
import numpy as np
import torch
from isegm.inference.clicker import Click, Clicker
from isegm.inference.predictors import BasePredictor
from isegm.inference.transforms import ZoomIn
from isegm.inference.utils import load_single_is_model
from isegm.utils.vis import draw_click, draw_contour, draw_mask
class InteractiveSegmentationInterface(object):
def __init__(self, device: torch.device):
self.device = device
self._clicker = Clicker()
self._pretrained_models = {
'GraCo_SimpleClick_ViT-B': {"weights": './weights/simpleclick/sbd_vit_base.pth', "lora": './weights/GraCo/sbd_vit_base_lora.pth'}
}
self._predictor = None
self._pred_prob = None
self._masked_img = None
self._build_interface()
self._add_functions()
def _build_interface(self):
with gr.Row():
with gr.Column():
with gr.Row():
choices = list(self._pretrained_models.keys())
self.model_name = gr.Dropdown(choices=choices, value=choices[0], label='Model')
self.loaded_model = gr.Textbox(label='Loaded Model', interactive=False)
self.load_button = gr.Button(value='Load Model')
with gr.Row():
self.input_img = gr.Image(label='Input Image')
self.click_map = gr.Image(
label='Click Map', show_download_button=False, interactive=False)
with gr.Row():
self.add_button = gr.Button(value='Add Click', interactive=False)
self.undo_button = gr.Button(value='Undo', interactive=False)
self.submit_button = gr.Button(value='Segment', interactive=False)
self.drawing_board = gr.Image(
label='Add Click',
interactive=False,
visible=False)
with gr.Row():
self.pos_button = gr.Button(value='Add Positive', visible=False)
self.neg_button = gr.Button(value='Add Negative', visible=False)
self.cancel_button = gr.Button(value='Cancel', visible=False)
with gr.Column():
self.threshold = gr.Slider(
label='Threshold',
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.01,
interactive=False)
self.granularity = gr.Slider(
label='Granularity',
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.01,
interactive=False)
self.seg_mask = gr.Image(
label='Segmentation', show_download_button=False, interactive=False)
def _add_functions(self):
self.input_img.upload(
fn=self._load_image,
inputs=self.input_img,
outputs=[
self.click_map, self.seg_mask, self.add_button, self.undo_button,
self.submit_button, self.threshold, self.granularity, self.drawing_board, self.pos_button,
self.neg_button, self.cancel_button
])
self.load_button.click(
fn=self._load_model,
inputs=[self.model_name, self.input_img],
outputs=[self.loaded_model, self.submit_button])
self.add_button.click(
fn=self._create_click,
outputs=[self.drawing_board, self.pos_button, self.neg_button, self.cancel_button])
self.undo_button.click(
fn=self._undo_click,
outputs=[self.click_map, self.drawing_board, self.undo_button, self.submit_button])
self.pos_button.click(
fn=self._add_pos_click,
inputs=self.drawing_board,
outputs=[
self.click_map, self.undo_button, self.submit_button, self.drawing_board,
self.pos_button, self.neg_button, self.cancel_button
])
self.neg_button.click(
fn=self._add_neg_click,
inputs=self.drawing_board,
outputs=[
self.click_map, self.undo_button, self.submit_button, self.drawing_board,
self.pos_button, self.neg_button, self.cancel_button
])
self.cancel_button.click(
fn=self._cancel,
outputs=[self.drawing_board, self.pos_button, self.neg_button, self.cancel_button])
self.submit_button.click(
fn=self._segment,
inputs=[self.input_img, self.threshold, self.granularity],
outputs=[self.seg_mask, self.click_map, self.drawing_board, self.threshold, self.granularity])
self.threshold.release(
fn=self._show_mask,
inputs=self.threshold,
outputs=[self.seg_mask, self.click_map, self.drawing_board])
@property
def _click_map(self):
if self._img is None:
return None
img = self._img if self._masked_img is None else self._masked_img
return draw_click(img, self._clicker.get_clicks())
def _load_image(self, img):
self._img = img
self._img_size = img.shape[:2]
self._clicker.reset_clicks()
self._pred_prob = None
self._masked_img = None
return (self._click_map, None, gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=False),
gr.update(interactive=False), gr.update(interactive=True), *self._cancel())
def _load_model(self, model_name, img):
if self._predictor is not None:
del self._predictor
self._predictor = None
gc.collect()
torch.cuda.empty_cache()
state_dict = torch.load(self._pretrained_models[model_name]["weights"], map_location='cpu')
model = load_single_is_model(state_dict, device=self.device, lora_checkpoint=self._pretrained_models[model_name]["lora"], eval_ritm=False)
zoom_in = ZoomIn(skip_clicks=-1, target_size=(448, 448))
self._predictor = BasePredictor(model, device=self.device, zoom_in=zoom_in, with_flip=True)
enable_submit = img is not None and len(self._clicker) > 0
return model_name, gr.update(interactive=enable_submit)
def _create_click(self):
return gr.update(
value=self._click_map, interactive=True,
visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
def _cancel(self):
return gr.update(
interactive=False, visible=False), gr.update(visible=False), gr.update(
visible=False), gr.update(visible=False)
def _add_click(self, inp, is_positive):
coords = np.nonzero(inp['mask'].sum(axis=-1))
if len(coords[0]) == 0:
return (self._click_map, gr.update(interactive=False), gr.update(interactive=False),
*self._cancel())
coords = (round(coords[0].mean()), round(coords[1].mean()))
click = Click(is_positive=is_positive, coords=coords)
self._clicker.add_click(click)
return (self._click_map, gr.update(interactive=True),
gr.update(interactive=self._predictor is not None), *self._cancel())
def _add_pos_click(self, inp):
return self._add_click(inp, is_positive=True)
def _add_neg_click(self, inp):
return self._add_click(inp, is_positive=False)
def _undo_click(self):
self._clicker._remove_last_click()
has_clicks = len(self._clicker) > 0
click_map = self._click_map
return (
click_map,
click_map,
gr.update(interactive=has_clicks),
gr.update(interactive=has_clicks),
)
@torch.no_grad()
def _segment(self, img, threshold, granularity):
self._predictor.set_input_image(img)
self._pred_prob = self._predictor.get_prediction(self._clicker, gra=granularity)
return (*self._show_mask(threshold), gr.update(value=0.5, interactive=True), gr.update(interactive=True))
def _show_mask(self, threshold):
mask = self._pred_prob > threshold
img = draw_mask(self._img, mask)
img = draw_contour(img, mask)
self._masked_img = img
click_map = self._click_map
return img, click_map, click_map
|