Spaces:
Running
Running
zhaoyian01
commited on
Commit
•
6d1366a
1
Parent(s):
d9b7cbf
Add application file
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +10 -0
- isegm/__init__.py +0 -0
- isegm/inference/clicker.py +118 -0
- isegm/inference/evaluation.py +197 -0
- isegm/inference/predictors/__init__.py +99 -0
- isegm/inference/predictors/base.py +191 -0
- isegm/inference/predictors/brs.py +307 -0
- isegm/inference/predictors/brs_functors.py +109 -0
- isegm/inference/predictors/brs_losses.py +58 -0
- isegm/inference/transforms/__init__.py +5 -0
- isegm/inference/transforms/base.py +38 -0
- isegm/inference/transforms/crops.py +97 -0
- isegm/inference/transforms/flip.py +37 -0
- isegm/inference/transforms/limit_longest_side.py +22 -0
- isegm/inference/transforms/zoom_in.py +190 -0
- isegm/inference/utils.py +149 -0
- isegm/model/__init__.py +0 -0
- isegm/model/build_sam.py +145 -0
- isegm/model/initializer.py +105 -0
- isegm/model/is_deeplab_model.py +25 -0
- isegm/model/is_hrformer_model.py +41 -0
- isegm/model/is_hrnet_model.py +26 -0
- isegm/model/is_model.py +114 -0
- isegm/model/is_plainvit_model.py +95 -0
- isegm/model/is_plainvit_model_lora.py +95 -0
- isegm/model/is_segformer_model.py +29 -0
- isegm/model/is_swinformer_model.py +21 -0
- isegm/model/is_text_graco_model.py +63 -0
- isegm/model/losses.py +195 -0
- isegm/model/metrics.py +101 -0
- isegm/model/modeling/__init__.py +0 -0
- isegm/model/modeling/basic_blocks.py +71 -0
- isegm/model/modeling/clip/__init__.py +1 -0
- isegm/model/modeling/clip/clip.py +245 -0
- isegm/model/modeling/clip/model.py +436 -0
- isegm/model/modeling/clip/simple_tokenizer.py +132 -0
- isegm/model/modeling/clip_text_encoding.py +29 -0
- isegm/model/modeling/deeplab_v3.py +176 -0
- isegm/model/modeling/hrformer.py +487 -0
- isegm/model/modeling/hrformer_helper/__init__.py +0 -0
- isegm/model/modeling/hrformer_helper/backbone_selector.py +54 -0
- isegm/model/modeling/hrformer_helper/hrt/__init__.py +0 -0
- isegm/model/modeling/hrformer_helper/hrt/hrt_backbone.py +661 -0
- isegm/model/modeling/hrformer_helper/hrt/hrt_config.py +123 -0
- isegm/model/modeling/hrformer_helper/hrt/logger.py +205 -0
- isegm/model/modeling/hrformer_helper/hrt/module_helper.py +310 -0
- isegm/model/modeling/hrformer_helper/hrt/modules/__init__.py +0 -0
- isegm/model/modeling/hrformer_helper/hrt/modules/bottleneck_block.py +128 -0
- isegm/model/modeling/hrformer_helper/hrt/modules/ffn_block.py +287 -0
- isegm/model/modeling/hrformer_helper/hrt/modules/multihead_attention.py +342 -0
app.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from web_app import GraCoWebApplication
|
2 |
+
|
3 |
+
|
4 |
+
def main():
|
5 |
+
app = GraCoWebApplication()
|
6 |
+
app.launch()
|
7 |
+
|
8 |
+
|
9 |
+
if __name__ == '__main__':
|
10 |
+
main()
|
isegm/__init__.py
ADDED
File without changes
|
isegm/inference/clicker.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from copy import deepcopy
|
3 |
+
import cv2
|
4 |
+
|
5 |
+
|
6 |
+
class Clicker(object):
|
7 |
+
def __init__(self, gt_mask=None, init_clicks=None, ignore_label=-1, click_indx_offset=0):
|
8 |
+
self.click_indx_offset = click_indx_offset
|
9 |
+
if gt_mask is not None:
|
10 |
+
self.gt_mask = gt_mask == 1
|
11 |
+
self.not_ignore_mask = gt_mask != ignore_label
|
12 |
+
else:
|
13 |
+
self.gt_mask = None
|
14 |
+
|
15 |
+
self.reset_clicks()
|
16 |
+
|
17 |
+
if init_clicks is not None:
|
18 |
+
for click in init_clicks:
|
19 |
+
self.add_click(click)
|
20 |
+
|
21 |
+
def make_next_click(self, pred_mask):
|
22 |
+
assert self.gt_mask is not None
|
23 |
+
click = self._get_next_click(pred_mask)
|
24 |
+
self.add_click(click)
|
25 |
+
|
26 |
+
def get_clicks(self, clicks_limit=None):
|
27 |
+
return self.clicks_list[:clicks_limit]
|
28 |
+
|
29 |
+
def _get_next_click(self, pred_mask, padding=True):
|
30 |
+
fn_mask = np.logical_and(np.logical_and(self.gt_mask, np.logical_not(pred_mask)), self.not_ignore_mask)
|
31 |
+
fp_mask = np.logical_and(np.logical_and(np.logical_not(self.gt_mask), pred_mask), self.not_ignore_mask)
|
32 |
+
|
33 |
+
if padding:
|
34 |
+
fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), 'constant')
|
35 |
+
fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), 'constant')
|
36 |
+
|
37 |
+
fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0)
|
38 |
+
fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0)
|
39 |
+
|
40 |
+
if padding:
|
41 |
+
fn_mask_dt = fn_mask_dt[1:-1, 1:-1]
|
42 |
+
fp_mask_dt = fp_mask_dt[1:-1, 1:-1]
|
43 |
+
|
44 |
+
fn_mask_dt = fn_mask_dt * self.not_clicked_map
|
45 |
+
fp_mask_dt = fp_mask_dt * self.not_clicked_map
|
46 |
+
|
47 |
+
fn_max_dist = np.max(fn_mask_dt)
|
48 |
+
fp_max_dist = np.max(fp_mask_dt)
|
49 |
+
|
50 |
+
is_positive = fn_max_dist > fp_max_dist
|
51 |
+
if is_positive:
|
52 |
+
coords_y, coords_x = np.where(fn_mask_dt == fn_max_dist) # coords is [y, x]
|
53 |
+
else:
|
54 |
+
coords_y, coords_x = np.where(fp_mask_dt == fp_max_dist) # coords is [y, x]
|
55 |
+
|
56 |
+
return Click(is_positive=is_positive, coords=(coords_y[0], coords_x[0]))
|
57 |
+
|
58 |
+
def add_click(self, click):
|
59 |
+
coords = click.coords
|
60 |
+
|
61 |
+
click.indx = self.click_indx_offset + self.num_pos_clicks + self.num_neg_clicks
|
62 |
+
if click.is_positive:
|
63 |
+
self.num_pos_clicks += 1
|
64 |
+
else:
|
65 |
+
self.num_neg_clicks += 1
|
66 |
+
|
67 |
+
self.clicks_list.append(click)
|
68 |
+
if self.gt_mask is not None:
|
69 |
+
self.not_clicked_map[coords[0], coords[1]] = False
|
70 |
+
|
71 |
+
def _remove_last_click(self):
|
72 |
+
click = self.clicks_list.pop()
|
73 |
+
coords = click.coords
|
74 |
+
|
75 |
+
if click.is_positive:
|
76 |
+
self.num_pos_clicks -= 1
|
77 |
+
else:
|
78 |
+
self.num_neg_clicks -= 1
|
79 |
+
|
80 |
+
if self.gt_mask is not None:
|
81 |
+
self.not_clicked_map[coords[0], coords[1]] = True
|
82 |
+
|
83 |
+
def reset_clicks(self):
|
84 |
+
if self.gt_mask is not None:
|
85 |
+
self.not_clicked_map = np.ones_like(self.gt_mask, dtype=bool)
|
86 |
+
|
87 |
+
self.num_pos_clicks = 0
|
88 |
+
self.num_neg_clicks = 0
|
89 |
+
|
90 |
+
self.clicks_list = []
|
91 |
+
|
92 |
+
def get_state(self):
|
93 |
+
return deepcopy(self.clicks_list)
|
94 |
+
|
95 |
+
def set_state(self, state):
|
96 |
+
self.reset_clicks()
|
97 |
+
for click in state:
|
98 |
+
self.add_click(click)
|
99 |
+
|
100 |
+
def __len__(self):
|
101 |
+
return len(self.clicks_list)
|
102 |
+
|
103 |
+
|
104 |
+
class Click:
|
105 |
+
def __init__(self, is_positive, coords, indx=None):
|
106 |
+
self.is_positive = is_positive
|
107 |
+
self.coords = coords
|
108 |
+
self.indx = indx
|
109 |
+
|
110 |
+
@property
|
111 |
+
def coords_and_indx(self):
|
112 |
+
return (*self.coords, self.indx)
|
113 |
+
|
114 |
+
def copy(self, **kwargs):
|
115 |
+
self_copy = deepcopy(self)
|
116 |
+
for k, v in kwargs.items():
|
117 |
+
setattr(self_copy, k, v)
|
118 |
+
return self_copy
|
isegm/inference/evaluation.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from time import time
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import cv2
|
6 |
+
from isegm.inference import utils
|
7 |
+
from isegm.inference.clicker import Click, Clicker
|
8 |
+
|
9 |
+
try:
|
10 |
+
get_ipython()
|
11 |
+
from tqdm import tqdm_notebook as tqdm
|
12 |
+
except NameError:
|
13 |
+
from tqdm import tqdm
|
14 |
+
|
15 |
+
|
16 |
+
def evaluate_dataset(dataset, predictor, sam_type=None, oracle=False, gra_oracle=False, **kwargs):
|
17 |
+
all_ious = []
|
18 |
+
start_time = time()
|
19 |
+
all_gras = {}
|
20 |
+
|
21 |
+
for index in tqdm(range(len(dataset)), leave=False):
|
22 |
+
sample = dataset.get_sample(index)
|
23 |
+
|
24 |
+
for object_id in sample.objects_ids:
|
25 |
+
if gra_oracle:
|
26 |
+
sample_ious, gra_idx = evaluate_sample_oracle(sample.image, sample.gt_mask(object_id), predictor,
|
27 |
+
sample_id=index, sam_type=sam_type, oracle=oracle, **kwargs)
|
28 |
+
all_gras[gra_idx] = all_gras.get(gra_idx, 0) + 1
|
29 |
+
else:
|
30 |
+
_, sample_ious, _ = evaluate_sample(sample.image, sample.gt_mask(object_id), predictor,
|
31 |
+
sample_id=index, sam_type=sam_type, oracle=oracle, **kwargs)
|
32 |
+
all_ious.append(sample_ious)
|
33 |
+
end_time = time()
|
34 |
+
elapsed_time = end_time - start_time
|
35 |
+
if len(all_gras) > 0:
|
36 |
+
print(all_gras)
|
37 |
+
|
38 |
+
return all_ious, elapsed_time
|
39 |
+
|
40 |
+
|
41 |
+
def evaluate_sample(image, gt_mask, predictor, max_iou_thr,
|
42 |
+
pred_thr=0.49, min_clicks=1, max_clicks=20,
|
43 |
+
sample_id=None, sam_type=False, oracle=False, callback=None):
|
44 |
+
clicker = Clicker(gt_mask=gt_mask)
|
45 |
+
pred_mask = np.zeros_like(gt_mask)
|
46 |
+
ious_list = []
|
47 |
+
with torch.no_grad():
|
48 |
+
predictor.set_input_image(image)
|
49 |
+
if sam_type == 'SAM':
|
50 |
+
for click_indx in range(max_clicks):
|
51 |
+
clicker.make_next_click(pred_mask)
|
52 |
+
point_coords, point_labels = get_sam_input(clicker)
|
53 |
+
if oracle:
|
54 |
+
ious = []
|
55 |
+
pred_masks = []
|
56 |
+
pred_probs, _, _ = predictor.predict(point_coords, point_labels, multimask_output=True, return_logits=True)
|
57 |
+
for idx in range(pred_probs.shape[0]):
|
58 |
+
pred_masks.append(pred_probs[idx] > predictor.model.mask_threshold)
|
59 |
+
ious.append(utils.get_iou(gt_mask, pred_masks[-1]))
|
60 |
+
tgt_idx = np.argmax(np.array(ious))
|
61 |
+
iou = ious[tgt_idx]
|
62 |
+
pred_mask = pred_masks[tgt_idx]
|
63 |
+
else:
|
64 |
+
pred_probs, _, _ = predictor.predict(point_coords, point_labels, multimask_output=False, return_logits=True)
|
65 |
+
pred_probs = pred_probs[0]
|
66 |
+
pred_mask = pred_probs > predictor.model.mask_threshold
|
67 |
+
iou = utils.get_iou(gt_mask, pred_mask)
|
68 |
+
|
69 |
+
if callback is not None:
|
70 |
+
callback(image, gt_mask, pred_probs, sample_id, click_indx, clicker.clicks_list)
|
71 |
+
|
72 |
+
ious_list.append(iou)
|
73 |
+
if iou >= max_iou_thr and click_indx + 1 >= min_clicks:
|
74 |
+
break
|
75 |
+
return clicker.clicks_list, np.array(ious_list, dtype=np.float32), pred_probs
|
76 |
+
else:
|
77 |
+
for click_indx in range(max_clicks):
|
78 |
+
clicker.make_next_click(pred_mask)
|
79 |
+
pred_probs = predictor.get_prediction(clicker)
|
80 |
+
pred_mask = pred_probs > pred_thr
|
81 |
+
iou = utils.get_iou(gt_mask, pred_mask)
|
82 |
+
|
83 |
+
if callback is not None:
|
84 |
+
callback(image, gt_mask, pred_probs, sample_id, click_indx, clicker.clicks_list)
|
85 |
+
|
86 |
+
ious_list.append(iou)
|
87 |
+
if iou >= max_iou_thr and click_indx + 1 >= min_clicks:
|
88 |
+
break
|
89 |
+
return clicker.clicks_list, np.array(ious_list, dtype=np.float32), pred_probs
|
90 |
+
|
91 |
+
|
92 |
+
def evaluate_sample_oracle(image, gt_mask, predictor, max_iou_thr,
|
93 |
+
pred_thr=0.49, min_clicks=1, max_clicks=20,
|
94 |
+
sample_id=None, sam_type=False, oracle=False, callback=None):
|
95 |
+
clicker = Clicker(gt_mask=gt_mask)
|
96 |
+
ious_lists = []
|
97 |
+
click_indxs = []
|
98 |
+
with torch.no_grad():
|
99 |
+
predictor.set_input_image(image)
|
100 |
+
min_num = 100
|
101 |
+
for gra in range(1, 11):
|
102 |
+
cur_gra = round(gra * 0.1, 1)
|
103 |
+
ious_list = []
|
104 |
+
clicker.reset_clicks()
|
105 |
+
pred_mask = np.zeros_like(gt_mask)
|
106 |
+
if sam_type == 'SAM_GraCo':
|
107 |
+
for click_indx in range(max_clicks):
|
108 |
+
clicker.make_next_click(pred_mask)
|
109 |
+
point_coords, point_labels = get_sam_input(clicker)
|
110 |
+
if oracle:
|
111 |
+
ious = []
|
112 |
+
pred_masks = []
|
113 |
+
pred_probs, _, _ = predictor.predict(point_coords, point_labels, gra=cur_gra, multimask_output=True, return_logits=True)
|
114 |
+
for idx in range(pred_probs.shape[0]):
|
115 |
+
pred_masks.append(pred_probs[idx] > predictor.model.mask_threshold)
|
116 |
+
ious.append(utils.get_iou(gt_mask, pred_masks[-1]))
|
117 |
+
tgt_idx = np.argmax(np.array(ious))
|
118 |
+
iou = ious[tgt_idx]
|
119 |
+
pred_mask = pred_masks[tgt_idx]
|
120 |
+
else:
|
121 |
+
pred_probs, _, _ = predictor.predict(point_coords, point_labels, gra=cur_gra, multimask_output=False, return_logits=True)
|
122 |
+
pred_probs = pred_probs[0]
|
123 |
+
pred_mask = pred_probs > predictor.model.mask_threshold
|
124 |
+
iou = utils.get_iou(gt_mask, pred_mask)
|
125 |
+
|
126 |
+
if callback is not None:
|
127 |
+
callback(image, gt_mask, pred_probs, sample_id, click_indx, clicker.clicks_list)
|
128 |
+
|
129 |
+
ious_list.append(iou)
|
130 |
+
if iou >= max_iou_thr and click_indx + 1 >= min_clicks:
|
131 |
+
min_num = min(min_num, click_indx + 1)
|
132 |
+
break
|
133 |
+
if min_num <= max_clicks and click_indx + 1 > min_num:
|
134 |
+
break
|
135 |
+
else:
|
136 |
+
predictor.prev_prediction = torch.zeros_like(predictor.original_image[:, :1, :, :])
|
137 |
+
for click_indx in range(max_clicks):
|
138 |
+
clicker.make_next_click(pred_mask)
|
139 |
+
pred_probs = predictor.get_prediction(clicker, gra=cur_gra)
|
140 |
+
|
141 |
+
pred_mask = pred_probs > pred_thr
|
142 |
+
iou = utils.get_iou(gt_mask, pred_mask)
|
143 |
+
|
144 |
+
if callback is not None:
|
145 |
+
callback(image, gt_mask, pred_probs, sample_id, click_indx, clicker.clicks_list)
|
146 |
+
|
147 |
+
ious_list.append(iou)
|
148 |
+
if iou >= max_iou_thr and click_indx + 1 >= min_clicks:
|
149 |
+
min_num = min(min_num, click_indx + 1)
|
150 |
+
break
|
151 |
+
if min_num <= max_clicks and click_indx + 1 > min_num:
|
152 |
+
break
|
153 |
+
ious_lists.append(np.array(ious_list, dtype=np.float32))
|
154 |
+
click_indxs.append(click_indx)
|
155 |
+
click_indxs = np.array(click_indxs)
|
156 |
+
tgt_idxs = np.squeeze(np.argwhere(click_indxs == np.min(click_indxs)), axis=1)
|
157 |
+
selected_ious = [ious_lists[i] for i in tgt_idxs]
|
158 |
+
max_index = np.argmax([ious[0] for ious in selected_ious])
|
159 |
+
ious = selected_ious[max_index]
|
160 |
+
tgt_idx = tgt_idxs[max_index]
|
161 |
+
|
162 |
+
return ious, tgt_idx
|
163 |
+
|
164 |
+
|
165 |
+
def get_sam_input(clicker, reverse=True):
|
166 |
+
clicks_list = clicker.get_clicks()
|
167 |
+
points_nd = get_points_nd([clicks_list])
|
168 |
+
point_length = len(points_nd[0]) // 2
|
169 |
+
point_coords = []
|
170 |
+
point_labels = []
|
171 |
+
for i, point in enumerate(points_nd[0]):
|
172 |
+
if point[0] == -1:
|
173 |
+
continue
|
174 |
+
if i < point_length:
|
175 |
+
point_labels.append(1)
|
176 |
+
else:
|
177 |
+
point_labels.append(0)
|
178 |
+
if reverse:
|
179 |
+
point_coords.append([point[1], point[0]]) # for SAM
|
180 |
+
return np.array(point_coords), np.array(point_labels)
|
181 |
+
|
182 |
+
def get_points_nd(clicks_lists):
|
183 |
+
total_clicks = []
|
184 |
+
num_pos_clicks = [sum(x.is_positive for x in clicks_list) for clicks_list in clicks_lists]
|
185 |
+
num_neg_clicks = [len(clicks_list) - num_pos for clicks_list, num_pos in zip(clicks_lists, num_pos_clicks)]
|
186 |
+
num_max_points = max(num_pos_clicks + num_neg_clicks)
|
187 |
+
num_max_points = max(1, num_max_points)
|
188 |
+
|
189 |
+
for clicks_list in clicks_lists:
|
190 |
+
pos_clicks = [click.coords_and_indx for click in clicks_list if click.is_positive]
|
191 |
+
pos_clicks = pos_clicks + (num_max_points - len(pos_clicks)) * [(-1, -1, -1)]
|
192 |
+
|
193 |
+
neg_clicks = [click.coords_and_indx for click in clicks_list if not click.is_positive]
|
194 |
+
neg_clicks = neg_clicks + (num_max_points - len(neg_clicks)) * [(-1, -1, -1)]
|
195 |
+
total_clicks.append(pos_clicks + neg_clicks)
|
196 |
+
|
197 |
+
return total_clicks
|
isegm/inference/predictors/__init__.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base import BasePredictor
|
2 |
+
from .brs import InputBRSPredictor, FeatureBRSPredictor, HRNetFeatureBRSPredictor
|
3 |
+
from .brs_functors import InputOptimizer, ScaleBiasOptimizer
|
4 |
+
from isegm.inference.transforms import ZoomIn
|
5 |
+
from isegm.model.is_hrnet_model import HRNetModel
|
6 |
+
|
7 |
+
|
8 |
+
def get_predictor(net, brs_mode, device,
|
9 |
+
gra=None, sam_type=None,
|
10 |
+
prob_thresh=0.49,
|
11 |
+
with_flip=True,
|
12 |
+
zoom_in_params=dict(),
|
13 |
+
predictor_params=None,
|
14 |
+
brs_opt_func_params=None,
|
15 |
+
lbfgs_params=None):
|
16 |
+
lbfgs_params_ = {
|
17 |
+
'm': 20,
|
18 |
+
'factr': 0,
|
19 |
+
'pgtol': 1e-8,
|
20 |
+
'maxfun': 20,
|
21 |
+
}
|
22 |
+
|
23 |
+
predictor_params_ = {
|
24 |
+
'optimize_after_n_clicks': 1
|
25 |
+
}
|
26 |
+
|
27 |
+
if zoom_in_params is not None:
|
28 |
+
zoom_in = ZoomIn(**zoom_in_params)
|
29 |
+
else:
|
30 |
+
zoom_in = None
|
31 |
+
|
32 |
+
if lbfgs_params is not None:
|
33 |
+
lbfgs_params_.update(lbfgs_params)
|
34 |
+
lbfgs_params_['maxiter'] = 2 * lbfgs_params_['maxfun']
|
35 |
+
|
36 |
+
if brs_opt_func_params is None:
|
37 |
+
brs_opt_func_params = dict()
|
38 |
+
|
39 |
+
if isinstance(net, (list, tuple)):
|
40 |
+
assert brs_mode == 'NoBRS', "Multi-stage models support only NoBRS mode."
|
41 |
+
|
42 |
+
if brs_mode == 'NoBRS':
|
43 |
+
if predictor_params is not None:
|
44 |
+
predictor_params_.update(predictor_params)
|
45 |
+
predictor = BasePredictor(net, device, gra=gra, sam_type=sam_type, zoom_in=zoom_in, with_flip=with_flip, **predictor_params_)
|
46 |
+
elif brs_mode.startswith('f-BRS'):
|
47 |
+
predictor_params_.update({
|
48 |
+
'net_clicks_limit': 8,
|
49 |
+
})
|
50 |
+
if predictor_params is not None:
|
51 |
+
predictor_params_.update(predictor_params)
|
52 |
+
|
53 |
+
insertion_mode = {
|
54 |
+
'f-BRS-A': 'after_c4',
|
55 |
+
'f-BRS-B': 'after_aspp',
|
56 |
+
'f-BRS-C': 'after_deeplab'
|
57 |
+
}[brs_mode]
|
58 |
+
|
59 |
+
opt_functor = ScaleBiasOptimizer(prob_thresh=prob_thresh,
|
60 |
+
with_flip=with_flip,
|
61 |
+
optimizer_params=lbfgs_params_,
|
62 |
+
**brs_opt_func_params)
|
63 |
+
|
64 |
+
if isinstance(net, HRNetModel):
|
65 |
+
FeaturePredictor = HRNetFeatureBRSPredictor
|
66 |
+
insertion_mode = {'after_c4': 'A', 'after_aspp': 'A', 'after_deeplab': 'C'}[insertion_mode]
|
67 |
+
else:
|
68 |
+
FeaturePredictor = FeatureBRSPredictor
|
69 |
+
|
70 |
+
predictor = FeaturePredictor(net, device,
|
71 |
+
opt_functor=opt_functor,
|
72 |
+
with_flip=with_flip,
|
73 |
+
insertion_mode=insertion_mode,
|
74 |
+
zoom_in=zoom_in,
|
75 |
+
**predictor_params_)
|
76 |
+
elif brs_mode == 'RGB-BRS' or brs_mode == 'DistMap-BRS':
|
77 |
+
use_dmaps = brs_mode == 'DistMap-BRS'
|
78 |
+
|
79 |
+
predictor_params_.update({
|
80 |
+
'net_clicks_limit': 5,
|
81 |
+
})
|
82 |
+
if predictor_params is not None:
|
83 |
+
predictor_params_.update(predictor_params)
|
84 |
+
|
85 |
+
opt_functor = InputOptimizer(prob_thresh=prob_thresh,
|
86 |
+
with_flip=with_flip,
|
87 |
+
optimizer_params=lbfgs_params_,
|
88 |
+
**brs_opt_func_params)
|
89 |
+
|
90 |
+
predictor = InputBRSPredictor(net, device,
|
91 |
+
optimize_target='dmaps' if use_dmaps else 'rgb',
|
92 |
+
opt_functor=opt_functor,
|
93 |
+
with_flip=with_flip,
|
94 |
+
zoom_in=zoom_in,
|
95 |
+
**predictor_params_)
|
96 |
+
else:
|
97 |
+
raise NotImplementedError
|
98 |
+
|
99 |
+
return predictor
|
isegm/inference/predictors/base.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import numpy as np
|
4 |
+
from torchvision import transforms
|
5 |
+
from isegm.inference.transforms import AddHorizontalFlip, SigmoidForPred, LimitLongestSide
|
6 |
+
|
7 |
+
class BasePredictor(object):
|
8 |
+
def __init__(self, model, device, gra=None, sam_type=None,
|
9 |
+
net_clicks_limit=None,
|
10 |
+
with_flip=False,
|
11 |
+
zoom_in=None,
|
12 |
+
max_size=None,
|
13 |
+
**kwargs):
|
14 |
+
self.with_flip = with_flip
|
15 |
+
self.net_clicks_limit = net_clicks_limit
|
16 |
+
self.original_image = None
|
17 |
+
self.device = device
|
18 |
+
self.gra=gra if gra is not None and gra > 0 else None
|
19 |
+
self.sam_type = sam_type
|
20 |
+
self.zoom_in = zoom_in
|
21 |
+
self.prev_prediction = None
|
22 |
+
self.model_indx = 0
|
23 |
+
self.click_models = None
|
24 |
+
self.net_state_dict = None
|
25 |
+
|
26 |
+
if isinstance(model, tuple):
|
27 |
+
self.net, self.click_models = model
|
28 |
+
else:
|
29 |
+
self.net = model
|
30 |
+
|
31 |
+
self.to_tensor = transforms.ToTensor()
|
32 |
+
|
33 |
+
self.transforms = [zoom_in] if zoom_in is not None else []
|
34 |
+
if max_size is not None:
|
35 |
+
self.transforms.append(LimitLongestSide(max_size=max_size))
|
36 |
+
self.transforms.append(SigmoidForPred())
|
37 |
+
if with_flip:
|
38 |
+
self.transforms.append(AddHorizontalFlip())
|
39 |
+
|
40 |
+
def set_input_image(self, image):
|
41 |
+
if not isinstance(image, torch.Tensor):
|
42 |
+
image_nd = self.to_tensor(image)
|
43 |
+
else:
|
44 |
+
image_nd = image
|
45 |
+
for transform in self.transforms:
|
46 |
+
transform.reset()
|
47 |
+
self.original_image = image_nd.to(self.device)
|
48 |
+
if len(self.original_image.shape) == 3:
|
49 |
+
self.original_image = self.original_image.unsqueeze(0)
|
50 |
+
self.prev_prediction = torch.zeros_like(self.original_image[:, :1, :, :])
|
51 |
+
|
52 |
+
def get_prediction(self, clicker, prev_mask=None, gra=None):
|
53 |
+
clicks_list = clicker.get_clicks()
|
54 |
+
|
55 |
+
if self.click_models is not None:
|
56 |
+
model_indx = min(clicker.click_indx_offset + len(clicks_list), len(self.click_models)) - 1
|
57 |
+
if model_indx != self.model_indx:
|
58 |
+
self.model_indx = model_indx
|
59 |
+
self.net = self.click_models[model_indx]
|
60 |
+
|
61 |
+
input_image = self.original_image
|
62 |
+
if prev_mask is None:
|
63 |
+
prev_mask = self.prev_prediction
|
64 |
+
if (hasattr(self.net, 'with_prev_mask') and self.net.with_prev_mask) or self.sam_type is not None:
|
65 |
+
input_image = torch.cat((input_image, prev_mask), dim=1)
|
66 |
+
image_nd, clicks_lists, is_image_changed = self.apply_transforms(
|
67 |
+
input_image, [clicks_list]
|
68 |
+
)
|
69 |
+
pred_logits = self._get_prediction(image_nd, clicks_lists, is_image_changed, gra=gra)
|
70 |
+
|
71 |
+
prediction = F.interpolate(pred_logits, mode='bilinear', align_corners=True,
|
72 |
+
size=image_nd.size()[2:])
|
73 |
+
|
74 |
+
for t in reversed(self.transforms):
|
75 |
+
prediction = t.inv_transform(prediction)
|
76 |
+
|
77 |
+
if self.zoom_in is not None and self.zoom_in.check_possible_recalculation():
|
78 |
+
return self.get_prediction(clicker)
|
79 |
+
|
80 |
+
self.prev_prediction = prediction
|
81 |
+
return prediction.cpu().numpy()[0, 0]
|
82 |
+
|
83 |
+
def _get_prediction(self, image_nd, clicks_lists, is_image_changed, gra=None):
|
84 |
+
points_nd = self.get_points_nd(clicks_lists)
|
85 |
+
if gra is None:
|
86 |
+
gra = self.gra
|
87 |
+
if self.sam_type == 'SAM':
|
88 |
+
batched_input = self.get_sam_batched_input(image_nd, points_nd)
|
89 |
+
batched_output = self.net(batched_input, multimask_output=False, return_logits=True)
|
90 |
+
return torch.cat([batch['masks'] for batch in batched_output], dim=0)
|
91 |
+
|
92 |
+
if gra is not None:
|
93 |
+
return self.net(image_nd, points_nd, torch.Tensor([gra]).to(self.device))['instances']
|
94 |
+
else:
|
95 |
+
return self.net(image_nd, points_nd)['instances']
|
96 |
+
|
97 |
+
|
98 |
+
def _batch_infer(self, batch_image_tensor, batch_clickers, prev_mask=None):
|
99 |
+
if prev_mask is None:
|
100 |
+
prev_mask = self.prev_prediction
|
101 |
+
|
102 |
+
if hasattr(self.net, 'with_prev_mask') and self.net.with_prev_mask:
|
103 |
+
input_image = torch.cat((batch_image_tensor, prev_mask), dim=1)
|
104 |
+
|
105 |
+
clicks_lists = [clicker.get_clicks() for clicker in batch_clickers]
|
106 |
+
image_nd, clicks_lists, is_image_changed = self.apply_transforms(
|
107 |
+
input_image, clicks_lists
|
108 |
+
)
|
109 |
+
points_nd = self.get_points_nd(clicks_lists)
|
110 |
+
pred_logits = self.net(image_nd, points_nd)['instances']
|
111 |
+
prediction = F.interpolate(pred_logits, mode='bilinear', align_corners=True,
|
112 |
+
size=image_nd.size()[2:])
|
113 |
+
|
114 |
+
for t in reversed(self.transforms):
|
115 |
+
prediction = t.inv_transform(prediction)
|
116 |
+
|
117 |
+
self.prev_prediction = prediction
|
118 |
+
return prediction.cpu().numpy()[:, 0]
|
119 |
+
|
120 |
+
def _get_transform_states(self):
|
121 |
+
return [x.get_state() for x in self.transforms]
|
122 |
+
|
123 |
+
def _set_transform_states(self, states):
|
124 |
+
assert len(states) == len(self.transforms)
|
125 |
+
for state, transform in zip(states, self.transforms):
|
126 |
+
transform.set_state(state)
|
127 |
+
|
128 |
+
def apply_transforms(self, image_nd, clicks_lists):
|
129 |
+
is_image_changed = False
|
130 |
+
for t in self.transforms:
|
131 |
+
image_nd, clicks_lists = t.transform(image_nd, clicks_lists)
|
132 |
+
is_image_changed |= t.image_changed
|
133 |
+
|
134 |
+
return image_nd, clicks_lists, is_image_changed
|
135 |
+
|
136 |
+
def get_points_nd(self, clicks_lists):
|
137 |
+
total_clicks = []
|
138 |
+
num_pos_clicks = [sum(x.is_positive for x in clicks_list) for clicks_list in clicks_lists]
|
139 |
+
num_neg_clicks = [len(clicks_list) - num_pos for clicks_list, num_pos in zip(clicks_lists, num_pos_clicks)]
|
140 |
+
num_max_points = max(num_pos_clicks + num_neg_clicks)
|
141 |
+
if self.net_clicks_limit is not None:
|
142 |
+
num_max_points = min(self.net_clicks_limit, num_max_points)
|
143 |
+
num_max_points = max(1, num_max_points)
|
144 |
+
|
145 |
+
for clicks_list in clicks_lists:
|
146 |
+
clicks_list = clicks_list[:self.net_clicks_limit]
|
147 |
+
pos_clicks = [click.coords_and_indx for click in clicks_list if click.is_positive]
|
148 |
+
pos_clicks = pos_clicks + (num_max_points - len(pos_clicks)) * [(-1, -1, -1)]
|
149 |
+
|
150 |
+
neg_clicks = [click.coords_and_indx for click in clicks_list if not click.is_positive]
|
151 |
+
neg_clicks = neg_clicks + (num_max_points - len(neg_clicks)) * [(-1, -1, -1)]
|
152 |
+
total_clicks.append(pos_clicks + neg_clicks)
|
153 |
+
|
154 |
+
return torch.tensor(total_clicks, device=self.device)
|
155 |
+
|
156 |
+
def get_sam_batched_input(self, image_nd, points_nd):
|
157 |
+
batched_output = []
|
158 |
+
for i in range(image_nd.shape[0]):
|
159 |
+
image = image_nd[i]
|
160 |
+
point_length = points_nd[i].shape[0] // 2
|
161 |
+
point_coords = []
|
162 |
+
point_labels = []
|
163 |
+
for i, point in enumerate(points_nd[i]):
|
164 |
+
point_np = point.cpu().numpy()
|
165 |
+
if point_np[0] == -1:
|
166 |
+
continue
|
167 |
+
if i < point_length:
|
168 |
+
point_labels.append(1)
|
169 |
+
else:
|
170 |
+
point_labels.append(0)
|
171 |
+
|
172 |
+
point_coords.append([point_np[1], point_np[0]])
|
173 |
+
res = {
|
174 |
+
'image': image[:3, :, :],
|
175 |
+
'point_coords': torch.as_tensor(np.array(point_coords), dtype=torch.float, device=self.device)[None, :],
|
176 |
+
'point_labels': torch.as_tensor(np.array(point_labels), dtype=torch.float, device=self.device)[None, :],
|
177 |
+
'original_size': image.cpu().numpy().shape[1:],
|
178 |
+
'mask_inputs': image[3, :, :][None, None, :]
|
179 |
+
}
|
180 |
+
batched_output.append(res)
|
181 |
+
return batched_output
|
182 |
+
|
183 |
+
def get_states(self):
|
184 |
+
return {
|
185 |
+
'transform_states': self._get_transform_states(),
|
186 |
+
'prev_prediction': self.prev_prediction.clone()
|
187 |
+
}
|
188 |
+
|
189 |
+
def set_states(self, states):
|
190 |
+
self._set_transform_states(states['transform_states'])
|
191 |
+
self.prev_prediction = states['prev_prediction']
|
isegm/inference/predictors/brs.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import numpy as np
|
4 |
+
from scipy.optimize import fmin_l_bfgs_b
|
5 |
+
|
6 |
+
from .base import BasePredictor
|
7 |
+
|
8 |
+
|
9 |
+
class BRSBasePredictor(BasePredictor):
|
10 |
+
def __init__(self, model, device, opt_functor, optimize_after_n_clicks=1, **kwargs):
|
11 |
+
super().__init__(model, device, **kwargs)
|
12 |
+
self.optimize_after_n_clicks = optimize_after_n_clicks
|
13 |
+
self.opt_functor = opt_functor
|
14 |
+
|
15 |
+
self.opt_data = None
|
16 |
+
self.input_data = None
|
17 |
+
|
18 |
+
def set_input_image(self, image):
|
19 |
+
super().set_input_image(image)
|
20 |
+
self.opt_data = None
|
21 |
+
self.input_data = None
|
22 |
+
|
23 |
+
def _get_clicks_maps_nd(self, clicks_lists, image_shape, radius=1):
|
24 |
+
pos_clicks_map = np.zeros((len(clicks_lists), 1) + image_shape, dtype=np.float32)
|
25 |
+
neg_clicks_map = np.zeros((len(clicks_lists), 1) + image_shape, dtype=np.float32)
|
26 |
+
|
27 |
+
for list_indx, clicks_list in enumerate(clicks_lists):
|
28 |
+
for click in clicks_list:
|
29 |
+
y, x = click.coords
|
30 |
+
y, x = int(round(y)), int(round(x))
|
31 |
+
y1, x1 = y - radius, x - radius
|
32 |
+
y2, x2 = y + radius + 1, x + radius + 1
|
33 |
+
|
34 |
+
if click.is_positive:
|
35 |
+
pos_clicks_map[list_indx, 0, y1:y2, x1:x2] = True
|
36 |
+
else:
|
37 |
+
neg_clicks_map[list_indx, 0, y1:y2, x1:x2] = True
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
pos_clicks_map = torch.from_numpy(pos_clicks_map).to(self.device)
|
41 |
+
neg_clicks_map = torch.from_numpy(neg_clicks_map).to(self.device)
|
42 |
+
|
43 |
+
return pos_clicks_map, neg_clicks_map
|
44 |
+
|
45 |
+
def get_states(self):
|
46 |
+
return {'transform_states': self._get_transform_states(), 'opt_data': self.opt_data}
|
47 |
+
|
48 |
+
def set_states(self, states):
|
49 |
+
self._set_transform_states(states['transform_states'])
|
50 |
+
self.opt_data = states['opt_data']
|
51 |
+
|
52 |
+
|
53 |
+
class FeatureBRSPredictor(BRSBasePredictor):
|
54 |
+
def __init__(self, model, device, opt_functor, insertion_mode='after_deeplab', **kwargs):
|
55 |
+
super().__init__(model, device, opt_functor=opt_functor, **kwargs)
|
56 |
+
self.insertion_mode = insertion_mode
|
57 |
+
self._c1_features = None
|
58 |
+
|
59 |
+
if self.insertion_mode == 'after_deeplab':
|
60 |
+
self.num_channels = model.feature_extractor.ch
|
61 |
+
elif self.insertion_mode == 'after_c4':
|
62 |
+
self.num_channels = model.feature_extractor.aspp_in_channels
|
63 |
+
elif self.insertion_mode == 'after_aspp':
|
64 |
+
self.num_channels = model.feature_extractor.ch + 32
|
65 |
+
else:
|
66 |
+
raise NotImplementedError
|
67 |
+
|
68 |
+
def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
|
69 |
+
points_nd = self.get_points_nd(clicks_lists)
|
70 |
+
pos_mask, neg_mask = self._get_clicks_maps_nd(clicks_lists, image_nd.shape[2:])
|
71 |
+
|
72 |
+
num_clicks = len(clicks_lists[0])
|
73 |
+
bs = image_nd.shape[0] // 2 if self.with_flip else image_nd.shape[0]
|
74 |
+
|
75 |
+
if self.opt_data is None or self.opt_data.shape[0] // (2 * self.num_channels) != bs:
|
76 |
+
self.opt_data = np.zeros((bs * 2 * self.num_channels), dtype=np.float32)
|
77 |
+
|
78 |
+
if num_clicks <= self.net_clicks_limit or is_image_changed or self.input_data is None:
|
79 |
+
self.input_data = self._get_head_input(image_nd, points_nd)
|
80 |
+
|
81 |
+
def get_prediction_logits(scale, bias):
|
82 |
+
scale = scale.view(bs, -1, 1, 1)
|
83 |
+
bias = bias.view(bs, -1, 1, 1)
|
84 |
+
if self.with_flip:
|
85 |
+
scale = scale.repeat(2, 1, 1, 1)
|
86 |
+
bias = bias.repeat(2, 1, 1, 1)
|
87 |
+
|
88 |
+
scaled_backbone_features = self.input_data * scale
|
89 |
+
scaled_backbone_features = scaled_backbone_features + bias
|
90 |
+
if self.insertion_mode == 'after_c4':
|
91 |
+
x = self.net.feature_extractor.aspp(scaled_backbone_features)
|
92 |
+
x = F.interpolate(x, mode='bilinear', size=self._c1_features.size()[2:],
|
93 |
+
align_corners=True)
|
94 |
+
x = torch.cat((x, self._c1_features), dim=1)
|
95 |
+
scaled_backbone_features = self.net.feature_extractor.head(x)
|
96 |
+
elif self.insertion_mode == 'after_aspp':
|
97 |
+
scaled_backbone_features = self.net.feature_extractor.head(scaled_backbone_features)
|
98 |
+
|
99 |
+
pred_logits = self.net.head(scaled_backbone_features)
|
100 |
+
pred_logits = F.interpolate(pred_logits, size=image_nd.size()[2:], mode='bilinear',
|
101 |
+
align_corners=True)
|
102 |
+
return pred_logits
|
103 |
+
|
104 |
+
self.opt_functor.init_click(get_prediction_logits, pos_mask, neg_mask, self.device)
|
105 |
+
if num_clicks > self.optimize_after_n_clicks:
|
106 |
+
opt_result = fmin_l_bfgs_b(func=self.opt_functor, x0=self.opt_data,
|
107 |
+
**self.opt_functor.optimizer_params)
|
108 |
+
self.opt_data = opt_result[0]
|
109 |
+
|
110 |
+
with torch.no_grad():
|
111 |
+
if self.opt_functor.best_prediction is not None:
|
112 |
+
opt_pred_logits = self.opt_functor.best_prediction
|
113 |
+
else:
|
114 |
+
opt_data_nd = torch.from_numpy(self.opt_data).to(self.device)
|
115 |
+
opt_vars, _ = self.opt_functor.unpack_opt_params(opt_data_nd)
|
116 |
+
opt_pred_logits = get_prediction_logits(*opt_vars)
|
117 |
+
|
118 |
+
return opt_pred_logits
|
119 |
+
|
120 |
+
def _get_head_input(self, image_nd, points):
|
121 |
+
with torch.no_grad():
|
122 |
+
image_nd, prev_mask = self.net.prepare_input(image_nd)
|
123 |
+
coord_features = self.net.get_coord_features(image_nd, prev_mask, points)
|
124 |
+
|
125 |
+
if self.net.rgb_conv is not None:
|
126 |
+
x = self.net.rgb_conv(torch.cat((image_nd, coord_features), dim=1))
|
127 |
+
additional_features = None
|
128 |
+
elif hasattr(self.net, 'maps_transform'):
|
129 |
+
x = image_nd
|
130 |
+
additional_features = self.net.maps_transform(coord_features)
|
131 |
+
|
132 |
+
if self.insertion_mode == 'after_c4' or self.insertion_mode == 'after_aspp':
|
133 |
+
c1, _, c3, c4 = self.net.feature_extractor.backbone(x, additional_features)
|
134 |
+
c1 = self.net.feature_extractor.skip_project(c1)
|
135 |
+
|
136 |
+
if self.insertion_mode == 'after_aspp':
|
137 |
+
x = self.net.feature_extractor.aspp(c4)
|
138 |
+
x = F.interpolate(x, size=c1.size()[2:], mode='bilinear', align_corners=True)
|
139 |
+
x = torch.cat((x, c1), dim=1)
|
140 |
+
backbone_features = x
|
141 |
+
else:
|
142 |
+
backbone_features = c4
|
143 |
+
self._c1_features = c1
|
144 |
+
else:
|
145 |
+
backbone_features = self.net.feature_extractor(x, additional_features)[0]
|
146 |
+
|
147 |
+
return backbone_features
|
148 |
+
|
149 |
+
|
150 |
+
class HRNetFeatureBRSPredictor(BRSBasePredictor):
|
151 |
+
def __init__(self, model, device, opt_functor, insertion_mode='A', **kwargs):
|
152 |
+
super().__init__(model, device, opt_functor=opt_functor, **kwargs)
|
153 |
+
self.insertion_mode = insertion_mode
|
154 |
+
self._c1_features = None
|
155 |
+
|
156 |
+
if self.insertion_mode == 'A':
|
157 |
+
self.num_channels = sum(k * model.feature_extractor.width for k in [1, 2, 4, 8])
|
158 |
+
elif self.insertion_mode == 'C':
|
159 |
+
self.num_channels = 2 * model.feature_extractor.ocr_width
|
160 |
+
else:
|
161 |
+
raise NotImplementedError
|
162 |
+
|
163 |
+
def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
|
164 |
+
points_nd = self.get_points_nd(clicks_lists)
|
165 |
+
pos_mask, neg_mask = self._get_clicks_maps_nd(clicks_lists, image_nd.shape[2:])
|
166 |
+
num_clicks = len(clicks_lists[0])
|
167 |
+
bs = image_nd.shape[0] // 2 if self.with_flip else image_nd.shape[0]
|
168 |
+
|
169 |
+
if self.opt_data is None or self.opt_data.shape[0] // (2 * self.num_channels) != bs:
|
170 |
+
self.opt_data = np.zeros((bs * 2 * self.num_channels), dtype=np.float32)
|
171 |
+
|
172 |
+
if num_clicks <= self.net_clicks_limit or is_image_changed or self.input_data is None:
|
173 |
+
self.input_data = self._get_head_input(image_nd, points_nd)
|
174 |
+
|
175 |
+
def get_prediction_logits(scale, bias):
|
176 |
+
scale = scale.view(bs, -1, 1, 1)
|
177 |
+
bias = bias.view(bs, -1, 1, 1)
|
178 |
+
if self.with_flip:
|
179 |
+
scale = scale.repeat(2, 1, 1, 1)
|
180 |
+
bias = bias.repeat(2, 1, 1, 1)
|
181 |
+
|
182 |
+
scaled_backbone_features = self.input_data * scale
|
183 |
+
scaled_backbone_features = scaled_backbone_features + bias
|
184 |
+
if self.insertion_mode == 'A':
|
185 |
+
if self.net.feature_extractor.ocr_width > 0:
|
186 |
+
out_aux = self.net.feature_extractor.aux_head(scaled_backbone_features)
|
187 |
+
feats = self.net.feature_extractor.conv3x3_ocr(scaled_backbone_features)
|
188 |
+
|
189 |
+
context = self.net.feature_extractor.ocr_gather_head(feats, out_aux)
|
190 |
+
feats = self.net.feature_extractor.ocr_distri_head(feats, context)
|
191 |
+
else:
|
192 |
+
feats = scaled_backbone_features
|
193 |
+
pred_logits = self.net.feature_extractor.cls_head(feats)
|
194 |
+
elif self.insertion_mode == 'C':
|
195 |
+
pred_logits = self.net.feature_extractor.cls_head(scaled_backbone_features)
|
196 |
+
else:
|
197 |
+
raise NotImplementedError
|
198 |
+
|
199 |
+
pred_logits = F.interpolate(pred_logits, size=image_nd.size()[2:], mode='bilinear',
|
200 |
+
align_corners=True)
|
201 |
+
return pred_logits
|
202 |
+
|
203 |
+
self.opt_functor.init_click(get_prediction_logits, pos_mask, neg_mask, self.device)
|
204 |
+
if num_clicks > self.optimize_after_n_clicks:
|
205 |
+
opt_result = fmin_l_bfgs_b(func=self.opt_functor, x0=self.opt_data,
|
206 |
+
**self.opt_functor.optimizer_params)
|
207 |
+
self.opt_data = opt_result[0]
|
208 |
+
|
209 |
+
with torch.no_grad():
|
210 |
+
if self.opt_functor.best_prediction is not None:
|
211 |
+
opt_pred_logits = self.opt_functor.best_prediction
|
212 |
+
else:
|
213 |
+
opt_data_nd = torch.from_numpy(self.opt_data).to(self.device)
|
214 |
+
opt_vars, _ = self.opt_functor.unpack_opt_params(opt_data_nd)
|
215 |
+
opt_pred_logits = get_prediction_logits(*opt_vars)
|
216 |
+
|
217 |
+
return opt_pred_logits
|
218 |
+
|
219 |
+
def _get_head_input(self, image_nd, points):
|
220 |
+
with torch.no_grad():
|
221 |
+
image_nd, prev_mask = self.net.prepare_input(image_nd)
|
222 |
+
coord_features = self.net.get_coord_features(image_nd, prev_mask, points)
|
223 |
+
|
224 |
+
if self.net.rgb_conv is not None:
|
225 |
+
x = self.net.rgb_conv(torch.cat((image_nd, coord_features), dim=1))
|
226 |
+
additional_features = None
|
227 |
+
elif hasattr(self.net, 'maps_transform'):
|
228 |
+
x = image_nd
|
229 |
+
additional_features = self.net.maps_transform(coord_features)
|
230 |
+
|
231 |
+
feats = self.net.feature_extractor.compute_hrnet_feats(x, additional_features)
|
232 |
+
|
233 |
+
if self.insertion_mode == 'A':
|
234 |
+
backbone_features = feats
|
235 |
+
elif self.insertion_mode == 'C':
|
236 |
+
out_aux = self.net.feature_extractor.aux_head(feats)
|
237 |
+
feats = self.net.feature_extractor.conv3x3_ocr(feats)
|
238 |
+
|
239 |
+
context = self.net.feature_extractor.ocr_gather_head(feats, out_aux)
|
240 |
+
backbone_features = self.net.feature_extractor.ocr_distri_head(feats, context)
|
241 |
+
else:
|
242 |
+
raise NotImplementedError
|
243 |
+
|
244 |
+
return backbone_features
|
245 |
+
|
246 |
+
|
247 |
+
class InputBRSPredictor(BRSBasePredictor):
|
248 |
+
def __init__(self, model, device, opt_functor, optimize_target='rgb', **kwargs):
|
249 |
+
super().__init__(model, device, opt_functor=opt_functor, **kwargs)
|
250 |
+
self.optimize_target = optimize_target
|
251 |
+
|
252 |
+
def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
|
253 |
+
points_nd = self.get_points_nd(clicks_lists)
|
254 |
+
pos_mask, neg_mask = self._get_clicks_maps_nd(clicks_lists, image_nd.shape[2:])
|
255 |
+
num_clicks = len(clicks_lists[0])
|
256 |
+
|
257 |
+
if self.opt_data is None or is_image_changed:
|
258 |
+
if self.optimize_target == 'dmaps':
|
259 |
+
opt_channels = self.net.coord_feature_ch - 1 if self.net.with_prev_mask else self.net.coord_feature_ch
|
260 |
+
else:
|
261 |
+
opt_channels = 3
|
262 |
+
bs = image_nd.shape[0] // 2 if self.with_flip else image_nd.shape[0]
|
263 |
+
self.opt_data = torch.zeros((bs, opt_channels, image_nd.shape[2], image_nd.shape[3]),
|
264 |
+
device=self.device, dtype=torch.float32)
|
265 |
+
|
266 |
+
def get_prediction_logits(opt_bias):
|
267 |
+
input_image, prev_mask = self.net.prepare_input(image_nd)
|
268 |
+
dmaps = self.net.get_coord_features(input_image, prev_mask, points_nd)
|
269 |
+
|
270 |
+
if self.optimize_target == 'rgb':
|
271 |
+
input_image = input_image + opt_bias
|
272 |
+
elif self.optimize_target == 'dmaps':
|
273 |
+
if self.net.with_prev_mask:
|
274 |
+
dmaps[:, 1:, :, :] = dmaps[:, 1:, :, :] + opt_bias
|
275 |
+
else:
|
276 |
+
dmaps = dmaps + opt_bias
|
277 |
+
|
278 |
+
if self.net.rgb_conv is not None:
|
279 |
+
x = self.net.rgb_conv(torch.cat((input_image, dmaps), dim=1))
|
280 |
+
if self.optimize_target == 'all':
|
281 |
+
x = x + opt_bias
|
282 |
+
coord_features = None
|
283 |
+
elif hasattr(self.net, 'maps_transform'):
|
284 |
+
x = input_image
|
285 |
+
coord_features = self.net.maps_transform(dmaps)
|
286 |
+
|
287 |
+
pred_logits = self.net.backbone_forward(x, coord_features=coord_features)['instances']
|
288 |
+
pred_logits = F.interpolate(pred_logits, size=image_nd.size()[2:], mode='bilinear', align_corners=True)
|
289 |
+
|
290 |
+
return pred_logits
|
291 |
+
|
292 |
+
self.opt_functor.init_click(get_prediction_logits, pos_mask, neg_mask, self.device,
|
293 |
+
shape=self.opt_data.shape)
|
294 |
+
if num_clicks > self.optimize_after_n_clicks:
|
295 |
+
opt_result = fmin_l_bfgs_b(func=self.opt_functor, x0=self.opt_data.cpu().numpy().ravel(),
|
296 |
+
**self.opt_functor.optimizer_params)
|
297 |
+
|
298 |
+
self.opt_data = torch.from_numpy(opt_result[0]).view(self.opt_data.shape).to(self.device)
|
299 |
+
|
300 |
+
with torch.no_grad():
|
301 |
+
if self.opt_functor.best_prediction is not None:
|
302 |
+
opt_pred_logits = self.opt_functor.best_prediction
|
303 |
+
else:
|
304 |
+
opt_vars, _ = self.opt_functor.unpack_opt_params(self.opt_data)
|
305 |
+
opt_pred_logits = get_prediction_logits(*opt_vars)
|
306 |
+
|
307 |
+
return opt_pred_logits
|
isegm/inference/predictors/brs_functors.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from isegm.model.metrics import _compute_iou
|
5 |
+
from .brs_losses import BRSMaskLoss
|
6 |
+
|
7 |
+
|
8 |
+
class BaseOptimizer:
|
9 |
+
def __init__(self, optimizer_params,
|
10 |
+
prob_thresh=0.49,
|
11 |
+
reg_weight=1e-3,
|
12 |
+
min_iou_diff=0.01,
|
13 |
+
brs_loss=BRSMaskLoss(),
|
14 |
+
with_flip=False,
|
15 |
+
flip_average=False,
|
16 |
+
**kwargs):
|
17 |
+
self.brs_loss = brs_loss
|
18 |
+
self.optimizer_params = optimizer_params
|
19 |
+
self.prob_thresh = prob_thresh
|
20 |
+
self.reg_weight = reg_weight
|
21 |
+
self.min_iou_diff = min_iou_diff
|
22 |
+
self.with_flip = with_flip
|
23 |
+
self.flip_average = flip_average
|
24 |
+
|
25 |
+
self.best_prediction = None
|
26 |
+
self._get_prediction_logits = None
|
27 |
+
self._opt_shape = None
|
28 |
+
self._best_loss = None
|
29 |
+
self._click_masks = None
|
30 |
+
self._last_mask = None
|
31 |
+
self.device = None
|
32 |
+
|
33 |
+
def init_click(self, get_prediction_logits, pos_mask, neg_mask, device, shape=None):
|
34 |
+
self.best_prediction = None
|
35 |
+
self._get_prediction_logits = get_prediction_logits
|
36 |
+
self._click_masks = (pos_mask, neg_mask)
|
37 |
+
self._opt_shape = shape
|
38 |
+
self._last_mask = None
|
39 |
+
self.device = device
|
40 |
+
|
41 |
+
def __call__(self, x):
|
42 |
+
opt_params = torch.from_numpy(x).float().to(self.device)
|
43 |
+
opt_params.requires_grad_(True)
|
44 |
+
|
45 |
+
with torch.enable_grad():
|
46 |
+
opt_vars, reg_loss = self.unpack_opt_params(opt_params)
|
47 |
+
result_before_sigmoid = self._get_prediction_logits(*opt_vars)
|
48 |
+
result = torch.sigmoid(result_before_sigmoid)
|
49 |
+
|
50 |
+
pos_mask, neg_mask = self._click_masks
|
51 |
+
if self.with_flip and self.flip_average:
|
52 |
+
result, result_flipped = torch.chunk(result, 2, dim=0)
|
53 |
+
result = 0.5 * (result + torch.flip(result_flipped, dims=[3]))
|
54 |
+
pos_mask, neg_mask = pos_mask[:result.shape[0]], neg_mask[:result.shape[0]]
|
55 |
+
|
56 |
+
loss, f_max_pos, f_max_neg = self.brs_loss(result, pos_mask, neg_mask)
|
57 |
+
loss = loss + reg_loss
|
58 |
+
|
59 |
+
f_val = loss.detach().cpu().numpy()
|
60 |
+
if self.best_prediction is None or f_val < self._best_loss:
|
61 |
+
self.best_prediction = result_before_sigmoid.detach()
|
62 |
+
self._best_loss = f_val
|
63 |
+
|
64 |
+
if f_max_pos < (1 - self.prob_thresh) and f_max_neg < self.prob_thresh:
|
65 |
+
return [f_val, np.zeros_like(x)]
|
66 |
+
|
67 |
+
current_mask = result > self.prob_thresh
|
68 |
+
if self._last_mask is not None and self.min_iou_diff > 0:
|
69 |
+
diff_iou = _compute_iou(current_mask, self._last_mask)
|
70 |
+
if len(diff_iou) > 0 and diff_iou.mean() > 1 - self.min_iou_diff:
|
71 |
+
return [f_val, np.zeros_like(x)]
|
72 |
+
self._last_mask = current_mask
|
73 |
+
|
74 |
+
loss.backward()
|
75 |
+
f_grad = opt_params.grad.cpu().numpy().ravel().astype(np.float)
|
76 |
+
|
77 |
+
return [f_val, f_grad]
|
78 |
+
|
79 |
+
def unpack_opt_params(self, opt_params):
|
80 |
+
raise NotImplementedError
|
81 |
+
|
82 |
+
|
83 |
+
class InputOptimizer(BaseOptimizer):
|
84 |
+
def unpack_opt_params(self, opt_params):
|
85 |
+
opt_params = opt_params.view(self._opt_shape)
|
86 |
+
if self.with_flip:
|
87 |
+
opt_params_flipped = torch.flip(opt_params, dims=[3])
|
88 |
+
opt_params = torch.cat([opt_params, opt_params_flipped], dim=0)
|
89 |
+
reg_loss = self.reg_weight * torch.sum(opt_params**2)
|
90 |
+
|
91 |
+
return (opt_params,), reg_loss
|
92 |
+
|
93 |
+
|
94 |
+
class ScaleBiasOptimizer(BaseOptimizer):
|
95 |
+
def __init__(self, *args, scale_act=None, reg_bias_weight=10.0, **kwargs):
|
96 |
+
super().__init__(*args, **kwargs)
|
97 |
+
self.scale_act = scale_act
|
98 |
+
self.reg_bias_weight = reg_bias_weight
|
99 |
+
|
100 |
+
def unpack_opt_params(self, opt_params):
|
101 |
+
scale, bias = torch.chunk(opt_params, 2, dim=0)
|
102 |
+
reg_loss = self.reg_weight * (torch.sum(scale**2) + self.reg_bias_weight * torch.sum(bias**2))
|
103 |
+
|
104 |
+
if self.scale_act == 'tanh':
|
105 |
+
scale = torch.tanh(scale)
|
106 |
+
elif self.scale_act == 'sin':
|
107 |
+
scale = torch.sin(scale)
|
108 |
+
|
109 |
+
return (1 + scale, bias), reg_loss
|
isegm/inference/predictors/brs_losses.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from isegm.model.losses import SigmoidBinaryCrossEntropyLoss
|
4 |
+
|
5 |
+
|
6 |
+
class BRSMaskLoss(torch.nn.Module):
|
7 |
+
def __init__(self, eps=1e-5):
|
8 |
+
super().__init__()
|
9 |
+
self._eps = eps
|
10 |
+
|
11 |
+
def forward(self, result, pos_mask, neg_mask):
|
12 |
+
pos_diff = (1 - result) * pos_mask
|
13 |
+
pos_target = torch.sum(pos_diff ** 2)
|
14 |
+
pos_target = pos_target / (torch.sum(pos_mask) + self._eps)
|
15 |
+
|
16 |
+
neg_diff = result * neg_mask
|
17 |
+
neg_target = torch.sum(neg_diff ** 2)
|
18 |
+
neg_target = neg_target / (torch.sum(neg_mask) + self._eps)
|
19 |
+
|
20 |
+
loss = pos_target + neg_target
|
21 |
+
|
22 |
+
with torch.no_grad():
|
23 |
+
f_max_pos = torch.max(torch.abs(pos_diff)).item()
|
24 |
+
f_max_neg = torch.max(torch.abs(neg_diff)).item()
|
25 |
+
|
26 |
+
return loss, f_max_pos, f_max_neg
|
27 |
+
|
28 |
+
|
29 |
+
class OracleMaskLoss(torch.nn.Module):
|
30 |
+
def __init__(self):
|
31 |
+
super().__init__()
|
32 |
+
self.gt_mask = None
|
33 |
+
self.loss = SigmoidBinaryCrossEntropyLoss(from_sigmoid=True)
|
34 |
+
self.predictor = None
|
35 |
+
self.history = []
|
36 |
+
|
37 |
+
def set_gt_mask(self, gt_mask):
|
38 |
+
self.gt_mask = gt_mask
|
39 |
+
self.history = []
|
40 |
+
|
41 |
+
def forward(self, result, pos_mask, neg_mask):
|
42 |
+
gt_mask = self.gt_mask.to(result.device)
|
43 |
+
if self.predictor.object_roi is not None:
|
44 |
+
r1, r2, c1, c2 = self.predictor.object_roi[:4]
|
45 |
+
gt_mask = gt_mask[:, :, r1:r2 + 1, c1:c2 + 1]
|
46 |
+
gt_mask = torch.nn.functional.interpolate(gt_mask, result.size()[2:], mode='bilinear', align_corners=True)
|
47 |
+
|
48 |
+
if result.shape[0] == 2:
|
49 |
+
gt_mask_flipped = torch.flip(gt_mask, dims=[3])
|
50 |
+
gt_mask = torch.cat([gt_mask, gt_mask_flipped], dim=0)
|
51 |
+
|
52 |
+
loss = self.loss(result, gt_mask)
|
53 |
+
self.history.append(loss.detach().cpu().numpy()[0])
|
54 |
+
|
55 |
+
if len(self.history) > 5 and abs(self.history[-5] - self.history[-1]) < 1e-5:
|
56 |
+
return 0, 0, 0
|
57 |
+
|
58 |
+
return loss, 1.0, 1.0
|
isegm/inference/transforms/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base import SigmoidForPred
|
2 |
+
from .flip import AddHorizontalFlip
|
3 |
+
from .zoom_in import ZoomIn
|
4 |
+
from .limit_longest_side import LimitLongestSide
|
5 |
+
from .crops import Crops
|
isegm/inference/transforms/base.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class BaseTransform(object):
|
5 |
+
def __init__(self):
|
6 |
+
self.image_changed = False
|
7 |
+
|
8 |
+
def transform(self, image_nd, clicks_lists):
|
9 |
+
raise NotImplementedError
|
10 |
+
|
11 |
+
def inv_transform(self, prob_map):
|
12 |
+
raise NotImplementedError
|
13 |
+
|
14 |
+
def reset(self):
|
15 |
+
raise NotImplementedError
|
16 |
+
|
17 |
+
def get_state(self):
|
18 |
+
raise NotImplementedError
|
19 |
+
|
20 |
+
def set_state(self, state):
|
21 |
+
raise NotImplementedError
|
22 |
+
|
23 |
+
|
24 |
+
class SigmoidForPred(BaseTransform):
|
25 |
+
def transform(self, image_nd, clicks_lists):
|
26 |
+
return image_nd, clicks_lists
|
27 |
+
|
28 |
+
def inv_transform(self, prob_map):
|
29 |
+
return torch.sigmoid(prob_map)
|
30 |
+
|
31 |
+
def reset(self):
|
32 |
+
pass
|
33 |
+
|
34 |
+
def get_state(self):
|
35 |
+
return None
|
36 |
+
|
37 |
+
def set_state(self, state):
|
38 |
+
pass
|
isegm/inference/transforms/crops.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
from isegm.inference.clicker import Click
|
8 |
+
from .base import BaseTransform
|
9 |
+
|
10 |
+
|
11 |
+
class Crops(BaseTransform):
|
12 |
+
def __init__(self, crop_size=(320, 480), min_overlap=0.2):
|
13 |
+
super().__init__()
|
14 |
+
self.crop_height, self.crop_width = crop_size
|
15 |
+
self.min_overlap = min_overlap
|
16 |
+
|
17 |
+
self.x_offsets = None
|
18 |
+
self.y_offsets = None
|
19 |
+
self._counts = None
|
20 |
+
|
21 |
+
def transform(self, image_nd, clicks_lists: List[List[Click]]):
|
22 |
+
assert image_nd.shape[0] == 1 and len(clicks_lists) == 1
|
23 |
+
image_height, image_width = image_nd.shape[2:4]
|
24 |
+
self._counts = None
|
25 |
+
|
26 |
+
if image_height < self.crop_height or image_width < self.crop_width:
|
27 |
+
return image_nd, clicks_lists
|
28 |
+
|
29 |
+
self.x_offsets = get_offsets(image_width, self.crop_width, self.min_overlap)
|
30 |
+
self.y_offsets = get_offsets(image_height, self.crop_height, self.min_overlap)
|
31 |
+
self._counts = np.zeros((image_height, image_width))
|
32 |
+
|
33 |
+
image_crops = []
|
34 |
+
for dy in self.y_offsets:
|
35 |
+
for dx in self.x_offsets:
|
36 |
+
self._counts[dy:dy + self.crop_height, dx:dx + self.crop_width] += 1
|
37 |
+
image_crop = image_nd[:, :, dy:dy + self.crop_height, dx:dx + self.crop_width]
|
38 |
+
image_crops.append(image_crop)
|
39 |
+
image_crops = torch.cat(image_crops, dim=0)
|
40 |
+
self._counts = torch.tensor(self._counts, device=image_nd.device, dtype=torch.float32)
|
41 |
+
|
42 |
+
clicks_list = clicks_lists[0]
|
43 |
+
clicks_lists = []
|
44 |
+
for dy in self.y_offsets:
|
45 |
+
for dx in self.x_offsets:
|
46 |
+
crop_clicks = [x.copy(coords=(x.coords[0] - dy, x.coords[1] - dx)) for x in clicks_list]
|
47 |
+
clicks_lists.append(crop_clicks)
|
48 |
+
|
49 |
+
return image_crops, clicks_lists
|
50 |
+
|
51 |
+
def inv_transform(self, prob_map):
|
52 |
+
if self._counts is None:
|
53 |
+
return prob_map
|
54 |
+
|
55 |
+
new_prob_map = torch.zeros((1, 1, *self._counts.shape),
|
56 |
+
dtype=prob_map.dtype, device=prob_map.device)
|
57 |
+
|
58 |
+
crop_indx = 0
|
59 |
+
for dy in self.y_offsets:
|
60 |
+
for dx in self.x_offsets:
|
61 |
+
new_prob_map[0, 0, dy:dy + self.crop_height, dx:dx + self.crop_width] += prob_map[crop_indx, 0]
|
62 |
+
crop_indx += 1
|
63 |
+
new_prob_map = torch.div(new_prob_map, self._counts)
|
64 |
+
|
65 |
+
return new_prob_map
|
66 |
+
|
67 |
+
def get_state(self):
|
68 |
+
return self.x_offsets, self.y_offsets, self._counts
|
69 |
+
|
70 |
+
def set_state(self, state):
|
71 |
+
self.x_offsets, self.y_offsets, self._counts = state
|
72 |
+
|
73 |
+
def reset(self):
|
74 |
+
self.x_offsets = None
|
75 |
+
self.y_offsets = None
|
76 |
+
self._counts = None
|
77 |
+
|
78 |
+
|
79 |
+
def get_offsets(length, crop_size, min_overlap_ratio=0.2):
|
80 |
+
if length == crop_size:
|
81 |
+
return [0]
|
82 |
+
|
83 |
+
N = (length / crop_size - min_overlap_ratio) / (1 - min_overlap_ratio)
|
84 |
+
N = math.ceil(N)
|
85 |
+
|
86 |
+
overlap_ratio = (N - length / crop_size) / (N - 1)
|
87 |
+
overlap_width = int(crop_size * overlap_ratio)
|
88 |
+
|
89 |
+
offsets = [0]
|
90 |
+
for i in range(1, N):
|
91 |
+
new_offset = offsets[-1] + crop_size - overlap_width
|
92 |
+
if new_offset + crop_size > length:
|
93 |
+
new_offset = length - crop_size
|
94 |
+
|
95 |
+
offsets.append(new_offset)
|
96 |
+
|
97 |
+
return offsets
|
isegm/inference/transforms/flip.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
from isegm.inference.clicker import Click
|
5 |
+
from .base import BaseTransform
|
6 |
+
|
7 |
+
|
8 |
+
class AddHorizontalFlip(BaseTransform):
|
9 |
+
def transform(self, image_nd, clicks_lists: List[List[Click]]):
|
10 |
+
assert len(image_nd.shape) == 4
|
11 |
+
image_nd = torch.cat([image_nd, torch.flip(image_nd, dims=[3])], dim=0)
|
12 |
+
|
13 |
+
image_width = image_nd.shape[3]
|
14 |
+
clicks_lists_flipped = []
|
15 |
+
for clicks_list in clicks_lists:
|
16 |
+
clicks_list_flipped = [click.copy(coords=(click.coords[0], image_width - click.coords[1] - 1))
|
17 |
+
for click in clicks_list]
|
18 |
+
clicks_lists_flipped.append(clicks_list_flipped)
|
19 |
+
clicks_lists = clicks_lists + clicks_lists_flipped
|
20 |
+
|
21 |
+
return image_nd, clicks_lists
|
22 |
+
|
23 |
+
def inv_transform(self, prob_map):
|
24 |
+
assert len(prob_map.shape) == 4 and prob_map.shape[0] % 2 == 0
|
25 |
+
num_maps = prob_map.shape[0] // 2
|
26 |
+
prob_map, prob_map_flipped = prob_map[:num_maps], prob_map[num_maps:]
|
27 |
+
|
28 |
+
return 0.5 * (prob_map + torch.flip(prob_map_flipped, dims=[3]))
|
29 |
+
|
30 |
+
def get_state(self):
|
31 |
+
return None
|
32 |
+
|
33 |
+
def set_state(self, state):
|
34 |
+
pass
|
35 |
+
|
36 |
+
def reset(self):
|
37 |
+
pass
|
isegm/inference/transforms/limit_longest_side.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .zoom_in import ZoomIn, get_roi_image_nd
|
2 |
+
|
3 |
+
|
4 |
+
class LimitLongestSide(ZoomIn):
|
5 |
+
def __init__(self, max_size=800):
|
6 |
+
super().__init__(target_size=max_size, skip_clicks=0)
|
7 |
+
|
8 |
+
def transform(self, image_nd, clicks_lists):
|
9 |
+
assert image_nd.shape[0] == 1 and len(clicks_lists) == 1
|
10 |
+
image_max_size = max(image_nd.shape[2:4])
|
11 |
+
self.image_changed = False
|
12 |
+
|
13 |
+
if image_max_size <= self.target_size:
|
14 |
+
return image_nd, clicks_lists
|
15 |
+
self._input_image = image_nd
|
16 |
+
|
17 |
+
self._object_roi = (0, image_nd.shape[2] - 1, 0, image_nd.shape[3] - 1)
|
18 |
+
self._roi_image = get_roi_image_nd(image_nd, self._object_roi, self.target_size)
|
19 |
+
self.image_changed = True
|
20 |
+
|
21 |
+
tclicks_lists = [self._transform_clicks(clicks_lists[0])]
|
22 |
+
return self._roi_image, tclicks_lists
|
isegm/inference/transforms/zoom_in.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from typing import List
|
4 |
+
from isegm.inference.clicker import Click
|
5 |
+
from isegm.utils.misc import get_bbox_iou, get_bbox_from_mask, expand_bbox, clamp_bbox
|
6 |
+
from .base import BaseTransform
|
7 |
+
|
8 |
+
|
9 |
+
class ZoomIn(BaseTransform):
|
10 |
+
def __init__(self,
|
11 |
+
target_size=400,
|
12 |
+
skip_clicks=1,
|
13 |
+
expansion_ratio=1.4,
|
14 |
+
min_crop_size=200,
|
15 |
+
recompute_thresh_iou=0.5,
|
16 |
+
prob_thresh=0.50):
|
17 |
+
super().__init__()
|
18 |
+
self.target_size = target_size
|
19 |
+
self.min_crop_size = min_crop_size
|
20 |
+
self.skip_clicks = skip_clicks
|
21 |
+
self.expansion_ratio = expansion_ratio
|
22 |
+
self.recompute_thresh_iou = recompute_thresh_iou
|
23 |
+
self.prob_thresh = prob_thresh
|
24 |
+
|
25 |
+
self._input_image_shape = None
|
26 |
+
self._prev_probs = None
|
27 |
+
self._object_roi = None
|
28 |
+
self._roi_image = None
|
29 |
+
|
30 |
+
def transform(self, image_nd, clicks_lists: List[List[Click]]):
|
31 |
+
transformed_image = []
|
32 |
+
transformed_clicks_lists = []
|
33 |
+
for bindx in range(len(clicks_lists)):
|
34 |
+
new_image_nd, new_clicks_lists = self._transform(image_nd[bindx].unsqueeze(0), [clicks_lists[bindx]])
|
35 |
+
transformed_image.append(new_image_nd)
|
36 |
+
transformed_clicks_lists.append(new_clicks_lists[0])
|
37 |
+
return torch.cat(transformed_image, dim=0), transformed_clicks_lists
|
38 |
+
|
39 |
+
def _transform(self, image_nd, clicks_lists: List[List[Click]]):
|
40 |
+
assert image_nd.shape[0] == 1 and len(clicks_lists) == 1
|
41 |
+
self.image_changed = False
|
42 |
+
|
43 |
+
clicks_list = clicks_lists[0]
|
44 |
+
if len(clicks_list) <= self.skip_clicks:
|
45 |
+
return image_nd, clicks_lists
|
46 |
+
|
47 |
+
self._input_image_shape = image_nd.shape
|
48 |
+
|
49 |
+
current_object_roi = None
|
50 |
+
if self._prev_probs is not None:
|
51 |
+
current_pred_mask = (self._prev_probs > self.prob_thresh)[0, 0]
|
52 |
+
if current_pred_mask.sum() > 0:
|
53 |
+
current_object_roi = get_object_roi(current_pred_mask, clicks_list,
|
54 |
+
self.expansion_ratio, self.min_crop_size)
|
55 |
+
|
56 |
+
if current_object_roi is None:
|
57 |
+
if self.skip_clicks >= 0:
|
58 |
+
return image_nd, clicks_lists
|
59 |
+
else:
|
60 |
+
current_object_roi = 0, image_nd.shape[2] - 1, 0, image_nd.shape[3] - 1
|
61 |
+
|
62 |
+
update_object_roi = False
|
63 |
+
if self._object_roi is None:
|
64 |
+
update_object_roi = True
|
65 |
+
elif not check_object_roi(self._object_roi, clicks_list):
|
66 |
+
update_object_roi = True
|
67 |
+
elif get_bbox_iou(current_object_roi, self._object_roi) < self.recompute_thresh_iou:
|
68 |
+
update_object_roi = True
|
69 |
+
|
70 |
+
if update_object_roi:
|
71 |
+
self._object_roi = current_object_roi
|
72 |
+
self.image_changed = True
|
73 |
+
self._roi_image = get_roi_image_nd(image_nd, self._object_roi, self.target_size)
|
74 |
+
tclicks_lists = [self._transform_clicks(clicks_list)]
|
75 |
+
return self._roi_image.to(image_nd.device), tclicks_lists
|
76 |
+
|
77 |
+
def inv_transform(self, prob_map):
|
78 |
+
new_prob_maps = []
|
79 |
+
for bindx in range(prob_map.shape[0]):
|
80 |
+
new_prob_map = self._inv_transform(prob_map[bindx].unsqueeze(0))
|
81 |
+
new_prob_maps.append(new_prob_map)
|
82 |
+
return torch.cat(new_prob_maps, dim=0)
|
83 |
+
|
84 |
+
def _inv_transform(self, prob_map):
|
85 |
+
if self._object_roi is None:
|
86 |
+
self._prev_probs = prob_map.cpu().numpy()
|
87 |
+
return prob_map
|
88 |
+
|
89 |
+
assert prob_map.shape[0] == 1
|
90 |
+
rmin, rmax, cmin, cmax = self._object_roi
|
91 |
+
prob_map = torch.nn.functional.interpolate(prob_map, size=(rmax - rmin + 1, cmax - cmin + 1),
|
92 |
+
mode='bilinear', align_corners=True)
|
93 |
+
|
94 |
+
if self._prev_probs is not None:
|
95 |
+
new_prob_map = torch.zeros(*self._prev_probs.shape, device=prob_map.device, dtype=prob_map.dtype)
|
96 |
+
new_prob_map[:, :, rmin:rmax + 1, cmin:cmax + 1] = prob_map
|
97 |
+
else:
|
98 |
+
new_prob_map = prob_map
|
99 |
+
|
100 |
+
self._prev_probs = new_prob_map.cpu().numpy()
|
101 |
+
|
102 |
+
return new_prob_map
|
103 |
+
|
104 |
+
def check_possible_recalculation(self):
|
105 |
+
if self._prev_probs is None or self._object_roi is not None or self.skip_clicks > 0:
|
106 |
+
return False
|
107 |
+
|
108 |
+
pred_mask = (self._prev_probs > self.prob_thresh)[0, 0]
|
109 |
+
if pred_mask.sum() > 0:
|
110 |
+
possible_object_roi = get_object_roi(pred_mask, [],
|
111 |
+
self.expansion_ratio, self.min_crop_size)
|
112 |
+
image_roi = (0, self._input_image_shape[2] - 1, 0, self._input_image_shape[3] - 1)
|
113 |
+
if get_bbox_iou(possible_object_roi, image_roi) < 0.50:
|
114 |
+
return True
|
115 |
+
return False
|
116 |
+
|
117 |
+
def get_state(self):
|
118 |
+
roi_image = self._roi_image.cpu() if self._roi_image is not None else None
|
119 |
+
return self._input_image_shape, self._object_roi, self._prev_probs, roi_image, self.image_changed
|
120 |
+
|
121 |
+
def set_state(self, state):
|
122 |
+
self._input_image_shape, self._object_roi, self._prev_probs, self._roi_image, self.image_changed = state
|
123 |
+
|
124 |
+
def reset(self):
|
125 |
+
self._input_image_shape = None
|
126 |
+
self._object_roi = None
|
127 |
+
self._prev_probs = None
|
128 |
+
self._roi_image = None
|
129 |
+
self.image_changed = False
|
130 |
+
|
131 |
+
def _transform_clicks(self, clicks_list):
|
132 |
+
if self._object_roi is None:
|
133 |
+
return clicks_list
|
134 |
+
|
135 |
+
rmin, rmax, cmin, cmax = self._object_roi
|
136 |
+
crop_height, crop_width = self._roi_image.shape[2:]
|
137 |
+
|
138 |
+
transformed_clicks = []
|
139 |
+
for click in clicks_list:
|
140 |
+
new_r = crop_height * (click.coords[0] - rmin) / (rmax - rmin + 1)
|
141 |
+
new_c = crop_width * (click.coords[1] - cmin) / (cmax - cmin + 1)
|
142 |
+
transformed_clicks.append(click.copy(coords=(new_r, new_c)))
|
143 |
+
return transformed_clicks
|
144 |
+
|
145 |
+
|
146 |
+
def get_object_roi(pred_mask, clicks_list, expansion_ratio, min_crop_size):
|
147 |
+
pred_mask = pred_mask.copy()
|
148 |
+
|
149 |
+
for click in clicks_list:
|
150 |
+
if click.is_positive:
|
151 |
+
pred_mask[int(click.coords[0]), int(click.coords[1])] = 1
|
152 |
+
|
153 |
+
bbox = get_bbox_from_mask(pred_mask)
|
154 |
+
bbox = expand_bbox(bbox, expansion_ratio, min_crop_size)
|
155 |
+
h, w = pred_mask.shape[0], pred_mask.shape[1]
|
156 |
+
bbox = clamp_bbox(bbox, 0, h - 1, 0, w - 1)
|
157 |
+
|
158 |
+
return bbox
|
159 |
+
|
160 |
+
|
161 |
+
def get_roi_image_nd(image_nd, object_roi, target_size):
|
162 |
+
rmin, rmax, cmin, cmax = object_roi
|
163 |
+
|
164 |
+
height = rmax - rmin + 1
|
165 |
+
width = cmax - cmin + 1
|
166 |
+
|
167 |
+
if isinstance(target_size, tuple):
|
168 |
+
new_height, new_width = target_size
|
169 |
+
else:
|
170 |
+
scale = target_size / max(height, width)
|
171 |
+
new_height = int(round(height * scale))
|
172 |
+
new_width = int(round(width * scale))
|
173 |
+
|
174 |
+
with torch.no_grad():
|
175 |
+
roi_image_nd = image_nd[:, :, rmin:rmax + 1, cmin:cmax + 1]
|
176 |
+
roi_image_nd = torch.nn.functional.interpolate(roi_image_nd, size=(new_height, new_width),
|
177 |
+
mode='bilinear', align_corners=True)
|
178 |
+
|
179 |
+
return roi_image_nd
|
180 |
+
|
181 |
+
|
182 |
+
def check_object_roi(object_roi, clicks_list):
|
183 |
+
for click in clicks_list:
|
184 |
+
if click.is_positive:
|
185 |
+
if click.coords[0] < object_roi[0] or click.coords[0] >= object_roi[1]:
|
186 |
+
return False
|
187 |
+
if click.coords[1] < object_roi[2] or click.coords[1] >= object_roi[3]:
|
188 |
+
return False
|
189 |
+
|
190 |
+
return True
|
isegm/inference/utils.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import timedelta
|
2 |
+
from pathlib import Path
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from isegm.utils.serialization import load_model
|
6 |
+
|
7 |
+
|
8 |
+
def get_time_metrics(all_ious, elapsed_time):
|
9 |
+
n_images = len(all_ious)
|
10 |
+
n_clicks = sum(map(len, all_ious))
|
11 |
+
|
12 |
+
mean_spc = elapsed_time / n_clicks
|
13 |
+
mean_spi = elapsed_time / n_images
|
14 |
+
|
15 |
+
return mean_spc, mean_spi
|
16 |
+
|
17 |
+
|
18 |
+
def load_is_model(checkpoint, device, eval_ritm, lora_checkpoint=None, **kwargs):
|
19 |
+
if isinstance(checkpoint, (str, Path)):
|
20 |
+
state_dict = torch.load(checkpoint, map_location='cpu')
|
21 |
+
else:
|
22 |
+
state_dict = checkpoint
|
23 |
+
if isinstance(state_dict, list):
|
24 |
+
model = load_single_is_model(state_dict[0], device, eval_ritm, **kwargs)
|
25 |
+
models = [load_single_is_model(x, device, eval_ritm, **kwargs) for x in state_dict]
|
26 |
+
|
27 |
+
return model, models
|
28 |
+
else:
|
29 |
+
return load_single_is_model(state_dict, device, eval_ritm, lora_checkpoint=lora_checkpoint, **kwargs)
|
30 |
+
|
31 |
+
|
32 |
+
def load_single_is_model(state_dict, device, eval_ritm, lora_checkpoint=None, **kwargs):
|
33 |
+
if 'config' in state_dict.keys():
|
34 |
+
_config = state_dict['config']
|
35 |
+
if lora_checkpoint is not None:
|
36 |
+
lora_state_dict = torch.load(lora_checkpoint, map_location='cpu')
|
37 |
+
_config = lora_state_dict['config']
|
38 |
+
|
39 |
+
model = load_model(_config, eval_ritm, **kwargs)
|
40 |
+
print("Load predictor weights...")
|
41 |
+
if 'state_dict' in state_dict.keys():
|
42 |
+
msg = model.load_state_dict(state_dict['state_dict'], strict=False)
|
43 |
+
else:
|
44 |
+
try:
|
45 |
+
msg = model.load_state_dict(state_dict, strict=False)
|
46 |
+
except:
|
47 |
+
current_state_dict = model.state_dict()
|
48 |
+
|
49 |
+
new_state_dict = {}
|
50 |
+
for k, v in state_dict.items():
|
51 |
+
if k in current_state_dict and v.shape == current_state_dict[k].shape:
|
52 |
+
new_state_dict[k] = v
|
53 |
+
|
54 |
+
msg = model.load_state_dict(new_state_dict, strict=False)
|
55 |
+
print(msg)
|
56 |
+
|
57 |
+
if lora_checkpoint is not None:
|
58 |
+
print("Load predictor LoRA weights...")
|
59 |
+
msg = model.load_state_dict(lora_state_dict['state_dict'], strict=False)
|
60 |
+
print(msg[1])
|
61 |
+
|
62 |
+
for param in model.parameters():
|
63 |
+
param.requires_grad = False
|
64 |
+
model.to(device)
|
65 |
+
model.eval()
|
66 |
+
|
67 |
+
return model
|
68 |
+
|
69 |
+
|
70 |
+
def get_iou(gt_mask, pred_mask, ignore_label=-1):
|
71 |
+
ignore_gt_mask_inv = gt_mask != ignore_label
|
72 |
+
obj_gt_mask = gt_mask == 1
|
73 |
+
|
74 |
+
intersection = np.logical_and(np.logical_and(pred_mask, obj_gt_mask), ignore_gt_mask_inv).sum()
|
75 |
+
union = np.logical_and(np.logical_or(pred_mask, obj_gt_mask), ignore_gt_mask_inv).sum()
|
76 |
+
|
77 |
+
return intersection / union
|
78 |
+
|
79 |
+
|
80 |
+
def compute_noc_metric(all_ious, iou_thrs, max_clicks=20):
|
81 |
+
def _get_noc(iou_arr, iou_thr):
|
82 |
+
vals = iou_arr >= iou_thr
|
83 |
+
return np.argmax(vals) + 1 if np.any(vals) else max_clicks
|
84 |
+
|
85 |
+
noc_list = []
|
86 |
+
noc_list_std = []
|
87 |
+
over_max_list = []
|
88 |
+
for iou_thr in iou_thrs:
|
89 |
+
scores_arr = np.array([_get_noc(iou_arr, iou_thr)
|
90 |
+
for iou_arr in all_ious], dtype=np.int_)
|
91 |
+
|
92 |
+
score = scores_arr.mean()
|
93 |
+
score_std = scores_arr.std()
|
94 |
+
over_max = (scores_arr == max_clicks).sum()
|
95 |
+
|
96 |
+
noc_list.append(score)
|
97 |
+
noc_list_std.append(score_std)
|
98 |
+
over_max_list.append(over_max)
|
99 |
+
|
100 |
+
return noc_list, noc_list_std, over_max_list
|
101 |
+
|
102 |
+
|
103 |
+
def find_checkpoint(weights_folder, checkpoint_name):
|
104 |
+
weights_folder = Path(weights_folder)
|
105 |
+
if ':' in checkpoint_name:
|
106 |
+
model_name, checkpoint_name = checkpoint_name.split(':')
|
107 |
+
models_candidates = [x for x in weights_folder.glob(f'{model_name}*') if x.is_dir()]
|
108 |
+
assert len(models_candidates) == 1
|
109 |
+
model_folder = models_candidates[0]
|
110 |
+
else:
|
111 |
+
model_folder = weights_folder
|
112 |
+
|
113 |
+
if checkpoint_name.endswith('.pth'):
|
114 |
+
if Path(checkpoint_name).exists():
|
115 |
+
checkpoint_path = checkpoint_name
|
116 |
+
else:
|
117 |
+
checkpoint_path = weights_folder / checkpoint_name
|
118 |
+
else:
|
119 |
+
model_checkpoints = list(model_folder.rglob(f'{checkpoint_name}*.pth'))
|
120 |
+
assert len(model_checkpoints) == 1
|
121 |
+
checkpoint_path = model_checkpoints[0]
|
122 |
+
|
123 |
+
return str(checkpoint_path)
|
124 |
+
|
125 |
+
|
126 |
+
def get_results_table(noc_list, over_max_list, brs_type, dataset_name, mean_spc, elapsed_time, iou_first,
|
127 |
+
n_clicks=20, model_name=None):
|
128 |
+
table_header = (f'|{"BRS Type":^13}|{"Dataset":^11}|'
|
129 |
+
f'{"NoC@80%":^9}|{"NoC@85%":^9}|{"NoC@90%":^9}|'
|
130 |
+
f'{"IoU@1":^9}|'
|
131 |
+
f'{">="+str(n_clicks)+"@85%":^9}|{">="+str(n_clicks)+"@90%":^9}|'
|
132 |
+
f'{"SPC,s":^7}|{"Time":^9}|')
|
133 |
+
row_width = len(table_header)
|
134 |
+
|
135 |
+
header = f'Eval results for model: {model_name}\n' if model_name is not None else ''
|
136 |
+
header += '-' * row_width + '\n'
|
137 |
+
header += table_header + '\n' + '-' * row_width
|
138 |
+
|
139 |
+
eval_time = str(timedelta(seconds=int(elapsed_time)))
|
140 |
+
table_row = f'|{brs_type:^13}|{dataset_name:^11}|'
|
141 |
+
table_row += f'{noc_list[0]:^9.2f}|'
|
142 |
+
table_row += f'{noc_list[1]:^9.2f}|' if len(noc_list) > 1 else f'{"?":^9}|'
|
143 |
+
table_row += f'{noc_list[2]:^9.2f}|' if len(noc_list) > 2 else f'{"?":^9}|'
|
144 |
+
table_row += f'{iou_first:^9.2f}|'
|
145 |
+
table_row += f'{over_max_list[1]:^9}|' if len(noc_list) > 1 else f'{"?":^9}|'
|
146 |
+
table_row += f'{over_max_list[2]:^9}|' if len(noc_list) > 2 else f'{"?":^9}|'
|
147 |
+
table_row += f'{mean_spc:^7.3f}|{eval_time:^9}|'
|
148 |
+
|
149 |
+
return header, table_row
|
isegm/model/__init__.py
ADDED
File without changes
|
isegm/model/build_sam.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
from .sam_modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer, SAMISWrapper
|
12 |
+
|
13 |
+
|
14 |
+
def build_sam_vit_h(checkpoint=None, enable_lora=False, enable_gra=False, mode='eval', image_size=1024):
|
15 |
+
return _build_sam(
|
16 |
+
encoder_embed_dim=1280,
|
17 |
+
encoder_depth=32,
|
18 |
+
encoder_num_heads=16,
|
19 |
+
encoder_global_attn_indexes=[7, 15, 23, 31],
|
20 |
+
checkpoint=checkpoint,
|
21 |
+
enable_lora=enable_lora,
|
22 |
+
enable_gra=enable_gra,
|
23 |
+
mode=mode,
|
24 |
+
image_size=image_size,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
build_sam = build_sam_vit_h
|
29 |
+
|
30 |
+
|
31 |
+
def build_sam_vit_l(checkpoint=None, enable_lora=False, enable_gra=False, mode='eval', image_size=1024):
|
32 |
+
return _build_sam(
|
33 |
+
encoder_embed_dim=1024,
|
34 |
+
encoder_depth=24,
|
35 |
+
encoder_num_heads=16,
|
36 |
+
encoder_global_attn_indexes=[5, 11, 17, 23],
|
37 |
+
checkpoint=checkpoint,
|
38 |
+
enable_lora=enable_lora,
|
39 |
+
enable_gra=enable_gra,
|
40 |
+
mode=mode,
|
41 |
+
image_size=image_size,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
def build_sam_vit_b(checkpoint=None, enable_lora=False, enable_gra=False, mode='eval', image_size=1024):
|
46 |
+
return _build_sam(
|
47 |
+
encoder_embed_dim=768,
|
48 |
+
encoder_depth=12,
|
49 |
+
encoder_num_heads=12,
|
50 |
+
encoder_global_attn_indexes=[2, 5, 8, 11],
|
51 |
+
checkpoint=checkpoint,
|
52 |
+
enable_lora=enable_lora,
|
53 |
+
enable_gra=enable_gra,
|
54 |
+
mode=mode,
|
55 |
+
image_size=image_size,
|
56 |
+
)
|
57 |
+
|
58 |
+
|
59 |
+
sam_model_registry = {
|
60 |
+
"default": build_sam_vit_h,
|
61 |
+
"vit_h": build_sam_vit_h,
|
62 |
+
"vit_l": build_sam_vit_l,
|
63 |
+
"vit_b": build_sam_vit_b,
|
64 |
+
}
|
65 |
+
|
66 |
+
|
67 |
+
def _build_sam(
|
68 |
+
encoder_embed_dim,
|
69 |
+
encoder_depth,
|
70 |
+
encoder_num_heads,
|
71 |
+
encoder_global_attn_indexes,
|
72 |
+
checkpoint=None,
|
73 |
+
enable_lora=False,
|
74 |
+
enable_gra=False,
|
75 |
+
mode='eval',
|
76 |
+
image_size=1024,
|
77 |
+
):
|
78 |
+
prompt_embed_dim = 256
|
79 |
+
image_size = image_size
|
80 |
+
vit_patch_size = 16
|
81 |
+
image_embedding_size = image_size // vit_patch_size
|
82 |
+
|
83 |
+
if mode == 'train':
|
84 |
+
sam = SAMISWrapper(
|
85 |
+
encoder_embed_dim=encoder_embed_dim,
|
86 |
+
encoder_depth=encoder_depth,
|
87 |
+
encoder_num_heads=encoder_num_heads,
|
88 |
+
encoder_global_attn_indexes=encoder_global_attn_indexes,
|
89 |
+
enable_lora=enable_lora,
|
90 |
+
enable_gra=enable_gra,
|
91 |
+
with_prev_mask=True,
|
92 |
+
image_size=image_size,
|
93 |
+
pixel_mean=[123.675, 116.28, 103.53],
|
94 |
+
pixel_std=[58.395, 57.12, 57.375],
|
95 |
+
)
|
96 |
+
else:
|
97 |
+
sam = Sam(
|
98 |
+
image_encoder=ImageEncoderViT(
|
99 |
+
depth=encoder_depth,
|
100 |
+
embed_dim=encoder_embed_dim,
|
101 |
+
img_size=image_size,
|
102 |
+
mlp_ratio=4,
|
103 |
+
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
104 |
+
num_heads=encoder_num_heads,
|
105 |
+
patch_size=vit_patch_size,
|
106 |
+
qkv_bias=True,
|
107 |
+
use_rel_pos=True,
|
108 |
+
global_attn_indexes=encoder_global_attn_indexes,
|
109 |
+
window_size=14,
|
110 |
+
out_chans=prompt_embed_dim,
|
111 |
+
),
|
112 |
+
prompt_encoder=PromptEncoder(
|
113 |
+
embed_dim=prompt_embed_dim,
|
114 |
+
image_embedding_size=(image_embedding_size, image_embedding_size),
|
115 |
+
input_image_size=(image_size, image_size),
|
116 |
+
mask_in_chans=16,
|
117 |
+
),
|
118 |
+
mask_decoder=MaskDecoder(
|
119 |
+
num_multimask_outputs=3,
|
120 |
+
transformer=TwoWayTransformer(
|
121 |
+
depth=2,
|
122 |
+
embedding_dim=prompt_embed_dim,
|
123 |
+
mlp_dim=2048,
|
124 |
+
num_heads=8,
|
125 |
+
),
|
126 |
+
transformer_dim=prompt_embed_dim,
|
127 |
+
iou_head_depth=3,
|
128 |
+
iou_head_hidden_dim=256,
|
129 |
+
),
|
130 |
+
pixel_mean=[123.675, 116.28, 103.53],
|
131 |
+
pixel_std=[58.395, 57.12, 57.375],
|
132 |
+
)
|
133 |
+
sam.eval()
|
134 |
+
if checkpoint is not None:
|
135 |
+
with open(checkpoint, "rb") as f:
|
136 |
+
pretrained_dict = torch.load(f)
|
137 |
+
|
138 |
+
model_dict = sam.state_dict()
|
139 |
+
new_pretrained_dict = {}
|
140 |
+
for k, v in pretrained_dict.items():
|
141 |
+
if k in model_dict and v.shape == model_dict[k].shape:
|
142 |
+
new_pretrained_dict[k] = v
|
143 |
+
msg = sam.load_state_dict(new_pretrained_dict, strict=False)
|
144 |
+
print("SAM load Info: ", msg)
|
145 |
+
return sam
|
isegm/model/initializer.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
class Initializer(object):
|
7 |
+
def __init__(self, local_init=True, gamma=None):
|
8 |
+
self.local_init = local_init
|
9 |
+
self.gamma = gamma
|
10 |
+
|
11 |
+
def __call__(self, m):
|
12 |
+
if getattr(m, '__initialized', False):
|
13 |
+
return
|
14 |
+
|
15 |
+
if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d,
|
16 |
+
nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d,
|
17 |
+
nn.GroupNorm, nn.SyncBatchNorm)) or 'BatchNorm' in m.__class__.__name__:
|
18 |
+
if m.weight is not None:
|
19 |
+
self._init_gamma(m.weight.data)
|
20 |
+
if m.bias is not None:
|
21 |
+
self._init_beta(m.bias.data)
|
22 |
+
else:
|
23 |
+
if getattr(m, 'weight', None) is not None:
|
24 |
+
self._init_weight(m.weight.data)
|
25 |
+
if getattr(m, 'bias', None) is not None:
|
26 |
+
self._init_bias(m.bias.data)
|
27 |
+
|
28 |
+
if self.local_init:
|
29 |
+
object.__setattr__(m, '__initialized', True)
|
30 |
+
|
31 |
+
def _init_weight(self, data):
|
32 |
+
nn.init.uniform_(data, -0.07, 0.07)
|
33 |
+
|
34 |
+
def _init_bias(self, data):
|
35 |
+
nn.init.constant_(data, 0)
|
36 |
+
|
37 |
+
def _init_gamma(self, data):
|
38 |
+
if self.gamma is None:
|
39 |
+
nn.init.constant_(data, 1.0)
|
40 |
+
else:
|
41 |
+
nn.init.normal_(data, 1.0, self.gamma)
|
42 |
+
|
43 |
+
def _init_beta(self, data):
|
44 |
+
nn.init.constant_(data, 0)
|
45 |
+
|
46 |
+
|
47 |
+
class Bilinear(Initializer):
|
48 |
+
def __init__(self, scale, groups, in_channels, **kwargs):
|
49 |
+
super().__init__(**kwargs)
|
50 |
+
self.scale = scale
|
51 |
+
self.groups = groups
|
52 |
+
self.in_channels = in_channels
|
53 |
+
|
54 |
+
def _init_weight(self, data):
|
55 |
+
"""Reset the weight and bias."""
|
56 |
+
bilinear_kernel = self.get_bilinear_kernel(self.scale)
|
57 |
+
weight = torch.zeros_like(data)
|
58 |
+
for i in range(self.in_channels):
|
59 |
+
if self.groups == 1:
|
60 |
+
j = i
|
61 |
+
else:
|
62 |
+
j = 0
|
63 |
+
weight[i, j] = bilinear_kernel
|
64 |
+
data[:] = weight
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def get_bilinear_kernel(scale):
|
68 |
+
"""Generate a bilinear upsampling kernel."""
|
69 |
+
kernel_size = 2 * scale - scale % 2
|
70 |
+
scale = (kernel_size + 1) // 2
|
71 |
+
center = scale - 0.5 * (1 + kernel_size % 2)
|
72 |
+
|
73 |
+
og = np.ogrid[:kernel_size, :kernel_size]
|
74 |
+
kernel = (1 - np.abs(og[0] - center) / scale) * (1 - np.abs(og[1] - center) / scale)
|
75 |
+
|
76 |
+
return torch.tensor(kernel, dtype=torch.float32)
|
77 |
+
|
78 |
+
|
79 |
+
class XavierGluon(Initializer):
|
80 |
+
def __init__(self, rnd_type='uniform', factor_type='avg', magnitude=3, **kwargs):
|
81 |
+
super().__init__(**kwargs)
|
82 |
+
|
83 |
+
self.rnd_type = rnd_type
|
84 |
+
self.factor_type = factor_type
|
85 |
+
self.magnitude = float(magnitude)
|
86 |
+
|
87 |
+
def _init_weight(self, arr):
|
88 |
+
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(arr)
|
89 |
+
|
90 |
+
if self.factor_type == 'avg':
|
91 |
+
factor = (fan_in + fan_out) / 2.0
|
92 |
+
elif self.factor_type == 'in':
|
93 |
+
factor = fan_in
|
94 |
+
elif self.factor_type == 'out':
|
95 |
+
factor = fan_out
|
96 |
+
else:
|
97 |
+
raise ValueError('Incorrect factor type')
|
98 |
+
scale = np.sqrt(self.magnitude / factor)
|
99 |
+
|
100 |
+
if self.rnd_type == 'uniform':
|
101 |
+
nn.init.uniform_(arr, -scale, scale)
|
102 |
+
elif self.rnd_type == 'gaussian':
|
103 |
+
nn.init.normal_(arr, 0, scale)
|
104 |
+
else:
|
105 |
+
raise ValueError('Unknown random type')
|
isegm/model/is_deeplab_model.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
from isegm.utils.serialization import serialize
|
4 |
+
from .is_model import ISModel
|
5 |
+
from .modeling.deeplab_v3 import DeepLabV3Plus
|
6 |
+
from .modeling.basic_blocks import SepConvHead
|
7 |
+
from isegm.model.modifiers import LRMult
|
8 |
+
|
9 |
+
|
10 |
+
class DeeplabModel(ISModel):
|
11 |
+
@serialize
|
12 |
+
def __init__(self, backbone='resnet50', deeplab_ch=256, aspp_dropout=0.5,
|
13 |
+
backbone_norm_layer=None, backbone_lr_mult=0.1, norm_layer=nn.BatchNorm2d, **kwargs):
|
14 |
+
super().__init__(norm_layer=norm_layer, **kwargs)
|
15 |
+
|
16 |
+
self.feature_extractor = DeepLabV3Plus(backbone=backbone, ch=deeplab_ch, project_dropout=aspp_dropout,
|
17 |
+
norm_layer=norm_layer, backbone_norm_layer=backbone_norm_layer)
|
18 |
+
self.feature_extractor.backbone.apply(LRMult(backbone_lr_mult))
|
19 |
+
self.head = SepConvHead(1, in_channels=deeplab_ch, mid_channels=deeplab_ch // 2,
|
20 |
+
num_layers=2, norm_layer=norm_layer)
|
21 |
+
|
22 |
+
def backbone_forward(self, image, coord_features=None):
|
23 |
+
backbone_features = self.feature_extractor(image, coord_features)
|
24 |
+
|
25 |
+
return {'instances': self.head(backbone_features[0])}
|
isegm/model/is_hrformer_model.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from collections import OrderedDict
|
5 |
+
|
6 |
+
from isegm.utils.serialization import serialize
|
7 |
+
from .is_model import ISModel
|
8 |
+
from isegm.model.modifiers import LRMult
|
9 |
+
from .modeling.hrformer import HRT_B_OCR_V3
|
10 |
+
|
11 |
+
class HRFormerModel(ISModel):
|
12 |
+
@serialize
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
num_classes=1,
|
16 |
+
in_ch=6,
|
17 |
+
backbone_lr_mult=0.1,
|
18 |
+
**kwargs
|
19 |
+
):
|
20 |
+
|
21 |
+
super().__init__(**kwargs)
|
22 |
+
|
23 |
+
self.feature_extractor = HRT_B_OCR_V3(num_classes, in_ch)
|
24 |
+
self.feature_extractor.apply(LRMult(backbone_lr_mult))
|
25 |
+
|
26 |
+
def backbone_forward(self, image, coord_features=None):
|
27 |
+
backbone_features = self.feature_extractor(image)
|
28 |
+
return {'instances': backbone_features[0], 'instances_aux': backbone_features[1]}
|
29 |
+
|
30 |
+
def init_weight(self, pretrained=None):
|
31 |
+
if pretrained is not None:
|
32 |
+
state_dict = torch.load(pretrained)['model']
|
33 |
+
state_dict_rename = OrderedDict()
|
34 |
+
for k, v in state_dict.items():
|
35 |
+
state_dict_rename['backbone.' + k] = v
|
36 |
+
|
37 |
+
ori_proj_weight = state_dict_rename['backbone.conv1.weight']
|
38 |
+
state_dict_rename['backbone.conv1.weight'] = torch.cat([ori_proj_weight, ori_proj_weight], dim=1)
|
39 |
+
|
40 |
+
self.feature_extractor.load_state_dict(state_dict_rename, False)
|
41 |
+
print('Successfully loaded pretrained model.')
|
isegm/model/is_hrnet_model.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
from isegm.utils.serialization import serialize
|
4 |
+
from .is_model import ISModel
|
5 |
+
from .modeling.hrnet_ocr import HighResolutionNet
|
6 |
+
from isegm.model.modifiers import LRMult
|
7 |
+
|
8 |
+
|
9 |
+
class HRNetModel(ISModel):
|
10 |
+
@serialize
|
11 |
+
def __init__(self, width=48, ocr_width=256, small=False, backbone_lr_mult=0.1,
|
12 |
+
norm_layer=nn.BatchNorm2d, **kwargs):
|
13 |
+
super().__init__(**kwargs)
|
14 |
+
|
15 |
+
self.feature_extractor = HighResolutionNet(width=width, ocr_width=ocr_width, small=small,
|
16 |
+
num_classes=1, norm_layer=norm_layer)
|
17 |
+
self.feature_extractor.apply(LRMult(backbone_lr_mult))
|
18 |
+
if ocr_width > 0:
|
19 |
+
self.feature_extractor.ocr_distri_head.apply(LRMult(1.0))
|
20 |
+
self.feature_extractor.ocr_gather_head.apply(LRMult(1.0))
|
21 |
+
self.feature_extractor.conv3x3_ocr.apply(LRMult(1.0))
|
22 |
+
|
23 |
+
def backbone_forward(self, image, coord_features=None):
|
24 |
+
net_outputs = self.feature_extractor(image, coord_features)
|
25 |
+
|
26 |
+
return {'instances': net_outputs[0], 'instances_aux': net_outputs[1]}
|
isegm/model/is_model.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from isegm.model.ops import DistMaps, BatchImageNormalize, ScaleLayer
|
6 |
+
|
7 |
+
|
8 |
+
class ISModel(nn.Module):
|
9 |
+
def __init__(self, with_aux_output=False, norm_radius=5, use_disks=False, cpu_dist_maps=False,
|
10 |
+
use_rgb_conv=False, use_leaky_relu=False, # the two arguments only used for RITM
|
11 |
+
with_prev_mask=False, norm_mean_std=([.485, .456, .406], [.229, .224, .225])):
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
self.with_aux_output = with_aux_output
|
15 |
+
self.with_prev_mask = with_prev_mask
|
16 |
+
self.normalization = BatchImageNormalize(norm_mean_std[0], norm_mean_std[1])
|
17 |
+
|
18 |
+
self.coord_feature_ch = 2
|
19 |
+
if self.with_prev_mask:
|
20 |
+
self.coord_feature_ch += 1
|
21 |
+
|
22 |
+
if use_rgb_conv:
|
23 |
+
# Only RITM models need to transform the coordinate features, though they don't use
|
24 |
+
# exact 'rgb_conv'. We keep 'use_rgb_conv' only for compatible issues.
|
25 |
+
# The simpleclick models use a patch embedding layer instead
|
26 |
+
mt_layers = [
|
27 |
+
nn.Conv2d(in_channels=self.coord_feature_ch, out_channels=16, kernel_size=1),
|
28 |
+
nn.LeakyReLU(negative_slope=0.2) if use_leaky_relu else nn.ReLU(inplace=True),
|
29 |
+
nn.Conv2d(in_channels=16, out_channels=64, kernel_size=3, stride=2, padding=1),
|
30 |
+
ScaleLayer(init_value=0.05, lr_mult=1)
|
31 |
+
]
|
32 |
+
self.maps_transform = nn.Sequential(*mt_layers)
|
33 |
+
else:
|
34 |
+
self.maps_transform=nn.Identity()
|
35 |
+
|
36 |
+
self.dist_maps = DistMaps(norm_radius=norm_radius, spatial_scale=1.0,
|
37 |
+
cpu_mode=cpu_dist_maps, use_disks=use_disks)
|
38 |
+
|
39 |
+
def forward(self, image, points, text=None, gra=None):
|
40 |
+
image, prev_mask = self.prepare_input(image)
|
41 |
+
coord_features = self.get_coord_features(image, prev_mask, points)
|
42 |
+
coord_features = self.maps_transform(coord_features)
|
43 |
+
|
44 |
+
if gra is not None and text is not None:
|
45 |
+
outputs = self.backbone_forward(image, coord_features, text=text, gra=gra)
|
46 |
+
elif gra is not None:
|
47 |
+
outputs = self.backbone_forward(image, coord_features, gra=gra)
|
48 |
+
elif text is not None:
|
49 |
+
outputs = self.backbone_forward(image, coord_features, text=text)
|
50 |
+
else:
|
51 |
+
outputs = self.backbone_forward(image, coord_features)
|
52 |
+
|
53 |
+
outputs['instances'] = nn.functional.interpolate(outputs['instances'], size=image.size()[2:],
|
54 |
+
mode='bilinear', align_corners=True)
|
55 |
+
if self.with_aux_output:
|
56 |
+
outputs['instances_aux'] = nn.functional.interpolate(outputs['instances_aux'], size=image.size()[2:],
|
57 |
+
mode='bilinear', align_corners=True)
|
58 |
+
|
59 |
+
return outputs
|
60 |
+
|
61 |
+
def prepare_input(self, image):
|
62 |
+
prev_mask = None
|
63 |
+
if self.with_prev_mask:
|
64 |
+
prev_mask = image[:, 3:, :, :]
|
65 |
+
image = image[:, :3, :, :]
|
66 |
+
|
67 |
+
image = self.normalization(image)
|
68 |
+
return image, prev_mask
|
69 |
+
|
70 |
+
def backbone_forward(self, image, coord_features=None):
|
71 |
+
raise NotImplementedError
|
72 |
+
|
73 |
+
def get_coord_features(self, image, prev_mask, points):
|
74 |
+
coord_features = self.dist_maps(image, points)
|
75 |
+
if prev_mask is not None:
|
76 |
+
coord_features = torch.cat((prev_mask, coord_features), dim=1)
|
77 |
+
|
78 |
+
return coord_features
|
79 |
+
|
80 |
+
|
81 |
+
def split_points_by_order(tpoints: torch.Tensor, groups):
|
82 |
+
points = tpoints.cpu().numpy()
|
83 |
+
num_groups = len(groups)
|
84 |
+
bs = points.shape[0]
|
85 |
+
num_points = points.shape[1] // 2
|
86 |
+
|
87 |
+
groups = [x if x > 0 else num_points for x in groups]
|
88 |
+
group_points = [np.full((bs, 2 * x, 3), -1, dtype=np.float32)
|
89 |
+
for x in groups]
|
90 |
+
|
91 |
+
last_point_indx_group = np.zeros((bs, num_groups, 2), dtype=np.int_)
|
92 |
+
for group_indx, group_size in enumerate(groups):
|
93 |
+
last_point_indx_group[:, group_indx, 1] = group_size
|
94 |
+
|
95 |
+
for bindx in range(bs):
|
96 |
+
for pindx in range(2 * num_points):
|
97 |
+
point = points[bindx, pindx, :]
|
98 |
+
group_id = int(point[2])
|
99 |
+
if group_id < 0:
|
100 |
+
continue
|
101 |
+
|
102 |
+
is_negative = int(pindx >= num_points)
|
103 |
+
if group_id >= num_groups or (group_id == 0 and is_negative): # disable negative first click
|
104 |
+
group_id = num_groups - 1
|
105 |
+
|
106 |
+
new_point_indx = last_point_indx_group[bindx, group_id, is_negative]
|
107 |
+
last_point_indx_group[bindx, group_id, is_negative] += 1
|
108 |
+
|
109 |
+
group_points[group_id][bindx, new_point_indx, :] = point
|
110 |
+
|
111 |
+
group_points = [torch.tensor(x, dtype=tpoints.dtype, device=tpoints.device)
|
112 |
+
for x in group_points]
|
113 |
+
|
114 |
+
return group_points
|
isegm/model/is_plainvit_model.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch.nn as nn
|
3 |
+
from isegm.utils.serialization import serialize
|
4 |
+
from .is_model import ISModel
|
5 |
+
from .modeling.models_vit import VisionTransformer, PatchEmbed
|
6 |
+
from .modeling.swin_transformer import SwinTransfomerSegHead
|
7 |
+
|
8 |
+
|
9 |
+
class SimpleFPN(nn.Module):
|
10 |
+
def __init__(self, in_dim=768, out_dims=[128, 256, 512, 1024]):
|
11 |
+
super().__init__()
|
12 |
+
self.down_4_chan = max(out_dims[0]*2, in_dim // 2)
|
13 |
+
self.down_4 = nn.Sequential(
|
14 |
+
nn.ConvTranspose2d(in_dim, self.down_4_chan, 2, stride=2),
|
15 |
+
nn.GroupNorm(1, self.down_4_chan),
|
16 |
+
nn.GELU(),
|
17 |
+
nn.ConvTranspose2d(self.down_4_chan, self.down_4_chan // 2, 2, stride=2),
|
18 |
+
nn.GroupNorm(1, self.down_4_chan // 2),
|
19 |
+
nn.Conv2d(self.down_4_chan // 2, out_dims[0], 1),
|
20 |
+
nn.GroupNorm(1, out_dims[0]),
|
21 |
+
nn.GELU()
|
22 |
+
)
|
23 |
+
self.down_8_chan = max(out_dims[1], in_dim // 2)
|
24 |
+
self.down_8 = nn.Sequential(
|
25 |
+
nn.ConvTranspose2d(in_dim, self.down_8_chan, 2, stride=2),
|
26 |
+
nn.GroupNorm(1, self.down_8_chan),
|
27 |
+
nn.Conv2d(self.down_8_chan, out_dims[1], 1),
|
28 |
+
nn.GroupNorm(1, out_dims[1]),
|
29 |
+
nn.GELU()
|
30 |
+
)
|
31 |
+
self.down_16 = nn.Sequential(
|
32 |
+
nn.Conv2d(in_dim, out_dims[2], 1),
|
33 |
+
nn.GroupNorm(1, out_dims[2]),
|
34 |
+
nn.GELU()
|
35 |
+
)
|
36 |
+
self.down_32_chan = max(out_dims[3], in_dim * 2)
|
37 |
+
self.down_32 = nn.Sequential(
|
38 |
+
nn.Conv2d(in_dim, self.down_32_chan, 2, stride=2),
|
39 |
+
nn.GroupNorm(1, self.down_32_chan),
|
40 |
+
nn.Conv2d(self.down_32_chan, out_dims[3], 1),
|
41 |
+
nn.GroupNorm(1, out_dims[3]),
|
42 |
+
nn.GELU()
|
43 |
+
)
|
44 |
+
|
45 |
+
self.init_weights()
|
46 |
+
|
47 |
+
def init_weights(self):
|
48 |
+
pass
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
x_down_4 = self.down_4(x)
|
52 |
+
x_down_8 = self.down_8(x)
|
53 |
+
x_down_16 = self.down_16(x)
|
54 |
+
x_down_32 = self.down_32(x)
|
55 |
+
|
56 |
+
return [x_down_4, x_down_8, x_down_16, x_down_32]
|
57 |
+
|
58 |
+
|
59 |
+
class PlainVitModel(ISModel):
|
60 |
+
@serialize
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
backbone_params={},
|
64 |
+
neck_params={},
|
65 |
+
head_params={},
|
66 |
+
random_split=False,
|
67 |
+
**kwargs
|
68 |
+
):
|
69 |
+
|
70 |
+
super().__init__(**kwargs)
|
71 |
+
self.random_split = random_split
|
72 |
+
|
73 |
+
self.patch_embed_coords = PatchEmbed(
|
74 |
+
img_size= backbone_params['img_size'],
|
75 |
+
patch_size=backbone_params['patch_size'],
|
76 |
+
in_chans=3 if self.with_prev_mask else 2,
|
77 |
+
embed_dim=backbone_params['embed_dim'],
|
78 |
+
)
|
79 |
+
|
80 |
+
self.backbone = VisionTransformer(**backbone_params)
|
81 |
+
self.neck = SimpleFPN(**neck_params)
|
82 |
+
self.head = SwinTransfomerSegHead(**head_params)
|
83 |
+
|
84 |
+
def backbone_forward(self, image, coord_features=None, gra=None):
|
85 |
+
coord_features = self.patch_embed_coords(coord_features)
|
86 |
+
backbone_features = self.backbone.forward_backbone(image, coord_features, gra=gra, shuffle=self.random_split)
|
87 |
+
|
88 |
+
# Extract 4 stage backbone feature map: 1/4, 1/8, 1/16, 1/32
|
89 |
+
B, N, C = backbone_features.shape
|
90 |
+
grid_size = self.backbone.patch_embed.grid_size
|
91 |
+
|
92 |
+
backbone_features = backbone_features.transpose(-1,-2).view(B, C, grid_size[0], grid_size[1])
|
93 |
+
multi_scale_features = self.neck(backbone_features)
|
94 |
+
|
95 |
+
return {'instances': self.head(multi_scale_features), 'instances_aux': None}
|
isegm/model/is_plainvit_model_lora.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch.nn as nn
|
3 |
+
from isegm.utils.serialization import serialize
|
4 |
+
from .is_model import ISModel
|
5 |
+
from .modeling.models_vit_lora import VisionTransformer_lora, PatchEmbed
|
6 |
+
from .modeling.swin_transformer import SwinTransfomerSegHead
|
7 |
+
|
8 |
+
|
9 |
+
class SimpleFPN(nn.Module):
|
10 |
+
def __init__(self, in_dim=768, out_dims=[128, 256, 512, 1024]):
|
11 |
+
super().__init__()
|
12 |
+
self.down_4_chan = max(out_dims[0]*2, in_dim // 2)
|
13 |
+
self.down_4 = nn.Sequential(
|
14 |
+
nn.ConvTranspose2d(in_dim, self.down_4_chan, 2, stride=2),
|
15 |
+
nn.GroupNorm(1, self.down_4_chan),
|
16 |
+
nn.GELU(),
|
17 |
+
nn.ConvTranspose2d(self.down_4_chan, self.down_4_chan // 2, 2, stride=2),
|
18 |
+
nn.GroupNorm(1, self.down_4_chan // 2),
|
19 |
+
nn.Conv2d(self.down_4_chan // 2, out_dims[0], 1),
|
20 |
+
nn.GroupNorm(1, out_dims[0]),
|
21 |
+
nn.GELU()
|
22 |
+
)
|
23 |
+
self.down_8_chan = max(out_dims[1], in_dim // 2)
|
24 |
+
self.down_8 = nn.Sequential(
|
25 |
+
nn.ConvTranspose2d(in_dim, self.down_8_chan, 2, stride=2),
|
26 |
+
nn.GroupNorm(1, self.down_8_chan),
|
27 |
+
nn.Conv2d(self.down_8_chan, out_dims[1], 1),
|
28 |
+
nn.GroupNorm(1, out_dims[1]),
|
29 |
+
nn.GELU()
|
30 |
+
)
|
31 |
+
self.down_16 = nn.Sequential(
|
32 |
+
nn.Conv2d(in_dim, out_dims[2], 1),
|
33 |
+
nn.GroupNorm(1, out_dims[2]),
|
34 |
+
nn.GELU()
|
35 |
+
)
|
36 |
+
self.down_32_chan = max(out_dims[3], in_dim * 2)
|
37 |
+
self.down_32 = nn.Sequential(
|
38 |
+
nn.Conv2d(in_dim, self.down_32_chan, 2, stride=2),
|
39 |
+
nn.GroupNorm(1, self.down_32_chan),
|
40 |
+
nn.Conv2d(self.down_32_chan, out_dims[3], 1),
|
41 |
+
nn.GroupNorm(1, out_dims[3]),
|
42 |
+
nn.GELU()
|
43 |
+
)
|
44 |
+
|
45 |
+
self.init_weights()
|
46 |
+
|
47 |
+
def init_weights(self):
|
48 |
+
pass
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
x_down_4 = self.down_4(x)
|
52 |
+
x_down_8 = self.down_8(x)
|
53 |
+
x_down_16 = self.down_16(x)
|
54 |
+
x_down_32 = self.down_32(x)
|
55 |
+
|
56 |
+
return [x_down_4, x_down_8, x_down_16, x_down_32]
|
57 |
+
|
58 |
+
|
59 |
+
class PlainVitModel_lora(ISModel):
|
60 |
+
@serialize
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
backbone_params={},
|
64 |
+
neck_params={},
|
65 |
+
head_params={},
|
66 |
+
random_split=False,
|
67 |
+
**kwargs
|
68 |
+
):
|
69 |
+
|
70 |
+
super().__init__(**kwargs)
|
71 |
+
self.random_split = random_split
|
72 |
+
|
73 |
+
self.patch_embed_coords = PatchEmbed(
|
74 |
+
img_size= backbone_params['img_size'],
|
75 |
+
patch_size=backbone_params['patch_size'],
|
76 |
+
in_chans=3 if self.with_prev_mask else 2,
|
77 |
+
embed_dim=backbone_params['embed_dim'],
|
78 |
+
)
|
79 |
+
|
80 |
+
self.backbone = VisionTransformer_lora(**backbone_params)
|
81 |
+
self.neck = SimpleFPN(**neck_params)
|
82 |
+
self.head = SwinTransfomerSegHead(**head_params)
|
83 |
+
|
84 |
+
def backbone_forward(self, image, coord_features=None, gra=None):
|
85 |
+
coord_features = self.patch_embed_coords(coord_features)
|
86 |
+
backbone_features = self.backbone.forward_backbone(image, coord_features, gra=gra, shuffle=self.random_split)
|
87 |
+
|
88 |
+
# Extract 4 stage backbone feature map: 1/4, 1/8, 1/16, 1/32
|
89 |
+
B, N, C = backbone_features.shape
|
90 |
+
grid_size = self.backbone.patch_embed.grid_size
|
91 |
+
|
92 |
+
backbone_features = backbone_features.transpose(-1,-2).view(B, C, grid_size[0], grid_size[1])
|
93 |
+
multi_scale_features = self.neck(backbone_features)
|
94 |
+
|
95 |
+
return {'instances': self.head(multi_scale_features), 'instances_aux': None}
|
isegm/model/is_segformer_model.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
from isegm.utils.serialization import serialize
|
4 |
+
from .is_model import ISModel
|
5 |
+
from isegm.model.modifiers import LRMult
|
6 |
+
from .modeling.segformer import MixVisionTransformer, SegformerHead
|
7 |
+
|
8 |
+
|
9 |
+
class SegformerModel(ISModel):
|
10 |
+
@serialize
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
backbone_params=None,
|
14 |
+
decode_head_params=None,
|
15 |
+
backbone_lr_mult=0.1,
|
16 |
+
**kwargs
|
17 |
+
):
|
18 |
+
|
19 |
+
super().__init__(**kwargs)
|
20 |
+
|
21 |
+
self.feature_extractor = MixVisionTransformer(**backbone_params)
|
22 |
+
self.feature_extractor.apply(LRMult(backbone_lr_mult))
|
23 |
+
|
24 |
+
self.head = SegformerHead(**decode_head_params)
|
25 |
+
|
26 |
+
def backbone_forward(self, image, coord_features=None):
|
27 |
+
backbone_features = self.feature_extractor(image, coord_features)
|
28 |
+
return {'instances': self.head(backbone_features), 'instances_aux': None}
|
29 |
+
|
isegm/model/is_swinformer_model.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from isegm.utils.serialization import serialize
|
2 |
+
from .is_model import ISModel
|
3 |
+
from .modeling.swin_transformer import SwinTransformer, SwinTransfomerSegHead
|
4 |
+
|
5 |
+
class SwinformerModel(ISModel):
|
6 |
+
@serialize
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
backbone_params={},
|
10 |
+
head_params={},
|
11 |
+
**kwargs
|
12 |
+
):
|
13 |
+
|
14 |
+
super().__init__(**kwargs)
|
15 |
+
|
16 |
+
self.backbone = SwinTransformer(**backbone_params)
|
17 |
+
self.head = SwinTransfomerSegHead(**head_params)
|
18 |
+
|
19 |
+
def backbone_forward(self, image, coord_features=None):
|
20 |
+
backbone_features = self.backbone(image, coord_features)
|
21 |
+
return {'instances': self.head(backbone_features), 'instances_aux': None}
|
isegm/model/is_text_graco_model.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from isegm.utils.serialization import serialize
|
3 |
+
from .is_model import ISModel
|
4 |
+
from .is_plainvit_model import SimpleFPN
|
5 |
+
from .modeling.models_vit import VisionTransformer, PatchEmbed
|
6 |
+
from .modeling.twoway_transformer import TwoWayTransformer, PositionEmbeddingRandom
|
7 |
+
from .modeling.swin_transformer import SwinTransfomerSegHead
|
8 |
+
from .modeling.clip_text_encoding import ClipTextEncoder
|
9 |
+
|
10 |
+
|
11 |
+
class TextGraCoModel(ISModel):
|
12 |
+
@serialize
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
image_encoder_params={},
|
16 |
+
text_encoder_params={},
|
17 |
+
cross_encoder_params={},
|
18 |
+
neck_params={},
|
19 |
+
head_params={},
|
20 |
+
random_split=False,
|
21 |
+
**kwargs
|
22 |
+
):
|
23 |
+
|
24 |
+
super().__init__(**kwargs)
|
25 |
+
self.random_split = random_split
|
26 |
+
|
27 |
+
self.patch_embed_coords = PatchEmbed(
|
28 |
+
img_size=image_encoder_params['img_size'],
|
29 |
+
patch_size=image_encoder_params['patch_size'],
|
30 |
+
in_chans=3 if self.with_prev_mask else 2,
|
31 |
+
embed_dim=image_encoder_params['embed_dim'],
|
32 |
+
)
|
33 |
+
|
34 |
+
self.image_encoder = VisionTransformer(**image_encoder_params)
|
35 |
+
self.text_encoder = ClipTextEncoder(**text_encoder_params)
|
36 |
+
self.cross_encoder = TwoWayTransformer(**cross_encoder_params)
|
37 |
+
|
38 |
+
self.pe_layer = PositionEmbeddingRandom(cross_encoder_params["embedding_dim"] // 2)
|
39 |
+
patch_size = image_encoder_params['patch_size'][0]
|
40 |
+
self.image_embedding_size = image_encoder_params['img_size'][0] // (patch_size if patch_size > 0 else 1)
|
41 |
+
|
42 |
+
self.neck = SimpleFPN(**neck_params)
|
43 |
+
self.head = SwinTransfomerSegHead(**head_params)
|
44 |
+
|
45 |
+
def backbone_forward(self, image, coord_features=None, text=None, gra=None):
|
46 |
+
coord_features = self.patch_embed_coords(coord_features)
|
47 |
+
backbone_features = self.image_encoder.forward_backbone(image, coord_features, gra=gra, shuffle=self.random_split)
|
48 |
+
text_features = self.text_encoder(text)
|
49 |
+
|
50 |
+
text_features, backbone_features = self.cross_encoder(
|
51 |
+
backbone_features,
|
52 |
+
self.pe_layer((self.image_embedding_size, self.image_embedding_size)).unsqueeze(0),
|
53 |
+
text_features)
|
54 |
+
|
55 |
+
# Extract 4 stage image_encoder feature map: 1/4, 1/8, 1/16, 1/32
|
56 |
+
B, N, C = backbone_features.shape
|
57 |
+
grid_size = self.image_encoder.patch_embed.grid_size
|
58 |
+
|
59 |
+
backbone_features = backbone_features.transpose(-1,-2).view(B, C, grid_size[0], grid_size[1])
|
60 |
+
multi_scale_features = self.neck(backbone_features)
|
61 |
+
|
62 |
+
return {'instances': self.head(multi_scale_features), 'instances_aux': None}
|
63 |
+
|
isegm/model/losses.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from isegm.utils import misc
|
7 |
+
|
8 |
+
|
9 |
+
class NormalizedFocalLossSigmoid(nn.Module):
|
10 |
+
def __init__(self, axis=-1, alpha=0.25, gamma=2, max_mult=-1, eps=1e-12,
|
11 |
+
from_sigmoid=False, detach_delimeter=True,
|
12 |
+
batch_axis=0, weight=None, size_average=True,
|
13 |
+
ignore_label=-1):
|
14 |
+
super(NormalizedFocalLossSigmoid, self).__init__()
|
15 |
+
self._axis = axis
|
16 |
+
self._alpha = alpha
|
17 |
+
self._gamma = gamma
|
18 |
+
self._ignore_label = ignore_label
|
19 |
+
self._weight = weight if weight is not None else 1.0
|
20 |
+
self._batch_axis = batch_axis
|
21 |
+
|
22 |
+
self._from_logits = from_sigmoid
|
23 |
+
self._eps = eps
|
24 |
+
self._size_average = size_average
|
25 |
+
self._detach_delimeter = detach_delimeter
|
26 |
+
self._max_mult = max_mult
|
27 |
+
self._k_sum = 0
|
28 |
+
self._m_max = 0
|
29 |
+
|
30 |
+
def forward(self, pred, label):
|
31 |
+
one_hot = label > 0.5
|
32 |
+
sample_weight = label != self._ignore_label
|
33 |
+
|
34 |
+
if not self._from_logits:
|
35 |
+
pred = torch.sigmoid(pred)
|
36 |
+
|
37 |
+
alpha = torch.where(one_hot, self._alpha * sample_weight, (1 - self._alpha) * sample_weight)
|
38 |
+
pt = torch.where(sample_weight, 1.0 - torch.abs(label - pred), torch.ones_like(pred))
|
39 |
+
|
40 |
+
beta = (1 - pt) ** self._gamma
|
41 |
+
|
42 |
+
sw_sum = torch.sum(sample_weight, dim=(-2, -1), keepdim=True)
|
43 |
+
beta_sum = torch.sum(beta, dim=(-2, -1), keepdim=True)
|
44 |
+
mult = sw_sum / (beta_sum + self._eps)
|
45 |
+
if self._detach_delimeter:
|
46 |
+
mult = mult.detach()
|
47 |
+
beta = beta * mult
|
48 |
+
if self._max_mult > 0:
|
49 |
+
beta = torch.clamp_max(beta, self._max_mult)
|
50 |
+
|
51 |
+
with torch.no_grad():
|
52 |
+
ignore_area = torch.sum(label == self._ignore_label, dim=tuple(range(1, label.dim()))).cpu().numpy()
|
53 |
+
sample_mult = torch.mean(mult, dim=tuple(range(1, mult.dim()))).cpu().numpy()
|
54 |
+
if np.any(ignore_area == 0):
|
55 |
+
self._k_sum = 0.9 * self._k_sum + 0.1 * sample_mult[ignore_area == 0].mean()
|
56 |
+
|
57 |
+
beta_pmax, _ = torch.flatten(beta, start_dim=1).max(dim=1)
|
58 |
+
beta_pmax = beta_pmax.mean().item()
|
59 |
+
self._m_max = 0.8 * self._m_max + 0.2 * beta_pmax
|
60 |
+
|
61 |
+
loss = -alpha * beta * torch.log(torch.min(pt + self._eps, torch.ones(1, dtype=torch.float).to(pt.device)))
|
62 |
+
loss = self._weight * (loss * sample_weight)
|
63 |
+
|
64 |
+
if self._size_average:
|
65 |
+
bsum = torch.sum(sample_weight, dim=misc.get_dims_with_exclusion(sample_weight.dim(), self._batch_axis))
|
66 |
+
loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis)) / (bsum + self._eps)
|
67 |
+
else:
|
68 |
+
loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis))
|
69 |
+
|
70 |
+
return loss
|
71 |
+
|
72 |
+
def log_states(self, sw, name, global_step):
|
73 |
+
sw.add_scalar(tag=name + '_k', value=self._k_sum, global_step=global_step)
|
74 |
+
sw.add_scalar(tag=name + '_m', value=self._m_max, global_step=global_step)
|
75 |
+
|
76 |
+
|
77 |
+
class FocalLoss(nn.Module):
|
78 |
+
def __init__(self, axis=-1, alpha=0.25, gamma=2,
|
79 |
+
from_logits=False, batch_axis=0,
|
80 |
+
weight=None, num_class=None,
|
81 |
+
eps=1e-9, size_average=True, scale=1.0,
|
82 |
+
ignore_label=-1):
|
83 |
+
super(FocalLoss, self).__init__()
|
84 |
+
self._axis = axis
|
85 |
+
self._alpha = alpha
|
86 |
+
self._gamma = gamma
|
87 |
+
self._ignore_label = ignore_label
|
88 |
+
self._weight = weight if weight is not None else 1.0
|
89 |
+
self._batch_axis = batch_axis
|
90 |
+
|
91 |
+
self._scale = scale
|
92 |
+
self._num_class = num_class
|
93 |
+
self._from_logits = from_logits
|
94 |
+
self._eps = eps
|
95 |
+
self._size_average = size_average
|
96 |
+
|
97 |
+
def forward(self, pred, label, sample_weight=None):
|
98 |
+
one_hot = label > 0.5
|
99 |
+
sample_weight = label != self._ignore_label
|
100 |
+
|
101 |
+
if not self._from_logits:
|
102 |
+
pred = torch.sigmoid(pred)
|
103 |
+
|
104 |
+
alpha = torch.where(one_hot, self._alpha * sample_weight, (1 - self._alpha) * sample_weight)
|
105 |
+
pt = torch.where(sample_weight, 1.0 - torch.abs(label - pred), torch.ones_like(pred))
|
106 |
+
|
107 |
+
beta = (1 - pt) ** self._gamma
|
108 |
+
|
109 |
+
loss = -alpha * beta * torch.log(torch.min(pt + self._eps, torch.ones(1, dtype=torch.float).to(pt.device)))
|
110 |
+
loss = self._weight * (loss * sample_weight)
|
111 |
+
|
112 |
+
if self._size_average:
|
113 |
+
tsum = torch.sum(sample_weight, dim=misc.get_dims_with_exclusion(label.dim(), self._batch_axis))
|
114 |
+
loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis)) / (tsum + self._eps)
|
115 |
+
else:
|
116 |
+
loss = torch.sum(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis))
|
117 |
+
|
118 |
+
return self._scale * loss
|
119 |
+
|
120 |
+
|
121 |
+
class SoftIoU(nn.Module):
|
122 |
+
def __init__(self, from_sigmoid=False, ignore_label=-1):
|
123 |
+
super().__init__()
|
124 |
+
self._from_sigmoid = from_sigmoid
|
125 |
+
self._ignore_label = ignore_label
|
126 |
+
|
127 |
+
def forward(self, pred, label):
|
128 |
+
label = label.view(pred.size())
|
129 |
+
sample_weight = label != self._ignore_label
|
130 |
+
|
131 |
+
if not self._from_sigmoid:
|
132 |
+
pred = torch.sigmoid(pred)
|
133 |
+
|
134 |
+
loss = 1.0 - torch.sum(pred * label * sample_weight, dim=(1, 2, 3)) \
|
135 |
+
/ (torch.sum(torch.max(pred, label) * sample_weight, dim=(1, 2, 3)) + 1e-8)
|
136 |
+
|
137 |
+
return loss
|
138 |
+
|
139 |
+
|
140 |
+
class SigmoidBinaryCrossEntropyLoss(nn.Module):
|
141 |
+
def __init__(self, from_sigmoid=False, weight=None, batch_axis=0, ignore_label=-1):
|
142 |
+
super(SigmoidBinaryCrossEntropyLoss, self).__init__()
|
143 |
+
self._from_sigmoid = from_sigmoid
|
144 |
+
self._ignore_label = ignore_label
|
145 |
+
self._weight = weight if weight is not None else 1.0
|
146 |
+
self._batch_axis = batch_axis
|
147 |
+
|
148 |
+
def forward(self, pred, label):
|
149 |
+
label = label.view(pred.size())
|
150 |
+
sample_weight = label != self._ignore_label
|
151 |
+
label = torch.where(sample_weight, label, torch.zeros_like(label))
|
152 |
+
|
153 |
+
if not self._from_sigmoid:
|
154 |
+
loss = torch.relu(pred) - pred * label + F.softplus(-torch.abs(pred))
|
155 |
+
else:
|
156 |
+
eps = 1e-12
|
157 |
+
loss = -(torch.log(pred + eps) * label
|
158 |
+
+ torch.log(1. - pred + eps) * (1. - label))
|
159 |
+
|
160 |
+
loss = self._weight * (loss * sample_weight)
|
161 |
+
return torch.mean(loss, dim=misc.get_dims_with_exclusion(loss.dim(), self._batch_axis))
|
162 |
+
|
163 |
+
|
164 |
+
class BinaryDiceLoss(nn.Module):
|
165 |
+
""" Dice Loss for binary segmentation
|
166 |
+
"""
|
167 |
+
|
168 |
+
def forward(self, pred, label):
|
169 |
+
batchsize = pred.size(0)
|
170 |
+
|
171 |
+
# convert probability to binary label using maximum probability
|
172 |
+
input_pred, input_label = pred.max(1)
|
173 |
+
input_pred *= input_label.float()
|
174 |
+
|
175 |
+
# convert to floats
|
176 |
+
input_pred = input_pred.float()
|
177 |
+
target_label = label.float()
|
178 |
+
|
179 |
+
# convert to 1D
|
180 |
+
input_pred = input_pred.view(batchsize, -1)
|
181 |
+
target_label = target_label.view(batchsize, -1)
|
182 |
+
|
183 |
+
# compute dice score
|
184 |
+
intersect = torch.sum(input_pred * target_label, 1)
|
185 |
+
input_area = torch.sum(input_pred * input_pred, 1)
|
186 |
+
target_area = torch.sum(target_label * target_label, 1)
|
187 |
+
|
188 |
+
sum = input_area + target_area
|
189 |
+
epsilon = torch.tensor(1e-6)
|
190 |
+
|
191 |
+
# batch dice loss and ignore dice loss where target area = 0
|
192 |
+
batch_loss = torch.tensor(1.0) - (torch.tensor(2.0) * intersect + epsilon) / (sum + epsilon)
|
193 |
+
loss = batch_loss.mean()
|
194 |
+
|
195 |
+
return loss
|
isegm/model/metrics.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
from isegm.utils import misc
|
5 |
+
|
6 |
+
|
7 |
+
class TrainMetric(object):
|
8 |
+
def __init__(self, pred_outputs, gt_outputs):
|
9 |
+
self.pred_outputs = pred_outputs
|
10 |
+
self.gt_outputs = gt_outputs
|
11 |
+
|
12 |
+
def update(self, *args, **kwargs):
|
13 |
+
raise NotImplementedError
|
14 |
+
|
15 |
+
def get_epoch_value(self):
|
16 |
+
raise NotImplementedError
|
17 |
+
|
18 |
+
def reset_epoch_stats(self):
|
19 |
+
raise NotImplementedError
|
20 |
+
|
21 |
+
def log_states(self, sw, tag_prefix, global_step):
|
22 |
+
pass
|
23 |
+
|
24 |
+
@property
|
25 |
+
def name(self):
|
26 |
+
return type(self).__name__
|
27 |
+
|
28 |
+
|
29 |
+
class AdaptiveIoU(TrainMetric):
|
30 |
+
def __init__(self, init_thresh=0.4, thresh_step=0.025, thresh_beta=0.99, iou_beta=0.9,
|
31 |
+
ignore_label=-1, from_logits=True,
|
32 |
+
pred_output='instances', gt_output='instances'):
|
33 |
+
super().__init__(pred_outputs=(pred_output,), gt_outputs=(gt_output,))
|
34 |
+
self._ignore_label = ignore_label
|
35 |
+
self._from_logits = from_logits
|
36 |
+
self._iou_thresh = init_thresh
|
37 |
+
self._thresh_step = thresh_step
|
38 |
+
self._thresh_beta = thresh_beta
|
39 |
+
self._iou_beta = iou_beta
|
40 |
+
self._ema_iou = 0.0
|
41 |
+
self._epoch_iou_sum = 0.0
|
42 |
+
self._epoch_batch_count = 0
|
43 |
+
|
44 |
+
def update(self, pred, gt):
|
45 |
+
gt_mask = gt > 0.5
|
46 |
+
if self._from_logits:
|
47 |
+
pred = torch.sigmoid(pred)
|
48 |
+
|
49 |
+
gt_mask_area = torch.sum(gt_mask, dim=(1, 2)).detach().cpu().numpy()
|
50 |
+
if np.all(gt_mask_area == 0):
|
51 |
+
return
|
52 |
+
|
53 |
+
ignore_mask = gt == self._ignore_label
|
54 |
+
max_iou = _compute_iou(pred > self._iou_thresh, gt_mask, ignore_mask).mean()
|
55 |
+
best_thresh = self._iou_thresh
|
56 |
+
for t in [best_thresh - self._thresh_step, best_thresh + self._thresh_step]:
|
57 |
+
temp_iou = _compute_iou(pred > t, gt_mask, ignore_mask).mean()
|
58 |
+
if temp_iou > max_iou:
|
59 |
+
max_iou = temp_iou
|
60 |
+
best_thresh = t
|
61 |
+
|
62 |
+
self._iou_thresh = self._thresh_beta * self._iou_thresh + (1 - self._thresh_beta) * best_thresh
|
63 |
+
self._ema_iou = self._iou_beta * self._ema_iou + (1 - self._iou_beta) * max_iou
|
64 |
+
self._epoch_iou_sum += max_iou
|
65 |
+
self._epoch_batch_count += 1
|
66 |
+
|
67 |
+
def get_epoch_value(self):
|
68 |
+
if self._epoch_batch_count > 0:
|
69 |
+
return self._epoch_iou_sum / self._epoch_batch_count
|
70 |
+
else:
|
71 |
+
return 0.0
|
72 |
+
|
73 |
+
def reset_epoch_stats(self):
|
74 |
+
self._epoch_iou_sum = 0.0
|
75 |
+
self._epoch_batch_count = 0
|
76 |
+
|
77 |
+
def log_states(self, sw, tag_prefix, global_step):
|
78 |
+
sw.add_scalar(tag=tag_prefix + '_ema_iou', value=self._ema_iou, global_step=global_step)
|
79 |
+
sw.add_scalar(tag=tag_prefix + '_iou_thresh', value=self._iou_thresh, global_step=global_step)
|
80 |
+
|
81 |
+
@property
|
82 |
+
def iou_thresh(self):
|
83 |
+
return self._iou_thresh
|
84 |
+
|
85 |
+
|
86 |
+
def _compute_iou(pred_mask, gt_mask, ignore_mask=None, keep_ignore=False):
|
87 |
+
if ignore_mask is not None:
|
88 |
+
pred_mask = torch.where(ignore_mask, torch.zeros_like(pred_mask), pred_mask)
|
89 |
+
|
90 |
+
reduction_dims = misc.get_dims_with_exclusion(gt_mask.dim(), 0)
|
91 |
+
union = torch.mean((pred_mask | gt_mask).float(), dim=reduction_dims).detach().cpu().numpy()
|
92 |
+
intersection = torch.mean((pred_mask & gt_mask).float(), dim=reduction_dims).detach().cpu().numpy()
|
93 |
+
nonzero = union > 0
|
94 |
+
|
95 |
+
iou = intersection[nonzero] / union[nonzero]
|
96 |
+
if not keep_ignore:
|
97 |
+
return iou
|
98 |
+
else:
|
99 |
+
result = np.full_like(intersection, -1)
|
100 |
+
result[nonzero] = iou
|
101 |
+
return result
|
isegm/model/modeling/__init__.py
ADDED
File without changes
|
isegm/model/modeling/basic_blocks.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
from isegm.model import ops
|
4 |
+
|
5 |
+
|
6 |
+
class ConvHead(nn.Module):
|
7 |
+
def __init__(self, out_channels, in_channels=32, num_layers=1,
|
8 |
+
kernel_size=3, padding=1,
|
9 |
+
norm_layer=nn.BatchNorm2d):
|
10 |
+
super(ConvHead, self).__init__()
|
11 |
+
convhead = []
|
12 |
+
|
13 |
+
for i in range(num_layers):
|
14 |
+
convhead.extend([
|
15 |
+
nn.Conv2d(in_channels, in_channels, kernel_size, padding=padding),
|
16 |
+
nn.ReLU(),
|
17 |
+
norm_layer(in_channels) if norm_layer is not None else nn.Identity()
|
18 |
+
])
|
19 |
+
convhead.append(nn.Conv2d(in_channels, out_channels, 1, padding=0))
|
20 |
+
|
21 |
+
self.convhead = nn.Sequential(*convhead)
|
22 |
+
|
23 |
+
def forward(self, *inputs):
|
24 |
+
return self.convhead(inputs[0])
|
25 |
+
|
26 |
+
|
27 |
+
class SepConvHead(nn.Module):
|
28 |
+
def __init__(self, num_outputs, in_channels, mid_channels, num_layers=1,
|
29 |
+
kernel_size=3, padding=1, dropout_ratio=0.0, dropout_indx=0,
|
30 |
+
norm_layer=nn.BatchNorm2d):
|
31 |
+
super(SepConvHead, self).__init__()
|
32 |
+
|
33 |
+
sepconvhead = []
|
34 |
+
|
35 |
+
for i in range(num_layers):
|
36 |
+
sepconvhead.append(
|
37 |
+
SeparableConv2d(in_channels=in_channels if i == 0 else mid_channels,
|
38 |
+
out_channels=mid_channels,
|
39 |
+
dw_kernel=kernel_size, dw_padding=padding,
|
40 |
+
norm_layer=norm_layer, activation='relu')
|
41 |
+
)
|
42 |
+
if dropout_ratio > 0 and dropout_indx == i:
|
43 |
+
sepconvhead.append(nn.Dropout(dropout_ratio))
|
44 |
+
|
45 |
+
sepconvhead.append(
|
46 |
+
nn.Conv2d(in_channels=mid_channels, out_channels=num_outputs, kernel_size=1, padding=0)
|
47 |
+
)
|
48 |
+
|
49 |
+
self.layers = nn.Sequential(*sepconvhead)
|
50 |
+
|
51 |
+
def forward(self, *inputs):
|
52 |
+
x = inputs[0]
|
53 |
+
|
54 |
+
return self.layers(x)
|
55 |
+
|
56 |
+
|
57 |
+
class SeparableConv2d(nn.Module):
|
58 |
+
def __init__(self, in_channels, out_channels, dw_kernel, dw_padding, dw_stride=1,
|
59 |
+
activation=None, use_bias=False, norm_layer=None):
|
60 |
+
super(SeparableConv2d, self).__init__()
|
61 |
+
_activation = ops.select_activation_function(activation)
|
62 |
+
self.body = nn.Sequential(
|
63 |
+
nn.Conv2d(in_channels, in_channels, kernel_size=dw_kernel, stride=dw_stride,
|
64 |
+
padding=dw_padding, bias=use_bias, groups=in_channels),
|
65 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=use_bias),
|
66 |
+
norm_layer(out_channels) if norm_layer is not None else nn.Identity(),
|
67 |
+
_activation()
|
68 |
+
)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
return self.body(x)
|
isegm/model/modeling/clip/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .clip import *
|
isegm/model/modeling/clip/clip.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from typing import Any, Union, List
|
6 |
+
from pkg_resources import packaging
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
from .model import build_model
|
14 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
15 |
+
|
16 |
+
try:
|
17 |
+
from torchvision.transforms import InterpolationMode
|
18 |
+
BICUBIC = InterpolationMode.BICUBIC
|
19 |
+
except ImportError:
|
20 |
+
BICUBIC = Image.BICUBIC
|
21 |
+
|
22 |
+
|
23 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
|
24 |
+
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
25 |
+
|
26 |
+
|
27 |
+
__all__ = ["available_models", "load", "tokenize"]
|
28 |
+
_tokenizer = _Tokenizer()
|
29 |
+
|
30 |
+
_MODELS = {
|
31 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
32 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
33 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
34 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
35 |
+
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
|
36 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
37 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
38 |
+
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
|
39 |
+
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
def _download(url: str, root: str):
|
44 |
+
os.makedirs(root, exist_ok=True)
|
45 |
+
filename = os.path.basename(url)
|
46 |
+
|
47 |
+
expected_sha256 = url.split("/")[-2]
|
48 |
+
download_target = os.path.join(root, filename)
|
49 |
+
|
50 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
51 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
52 |
+
|
53 |
+
if os.path.isfile(download_target):
|
54 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
55 |
+
return download_target
|
56 |
+
else:
|
57 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
58 |
+
|
59 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
60 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
61 |
+
while True:
|
62 |
+
buffer = source.read(8192)
|
63 |
+
if not buffer:
|
64 |
+
break
|
65 |
+
|
66 |
+
output.write(buffer)
|
67 |
+
loop.update(len(buffer))
|
68 |
+
|
69 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
70 |
+
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
|
71 |
+
|
72 |
+
return download_target
|
73 |
+
|
74 |
+
|
75 |
+
def _convert_image_to_rgb(image):
|
76 |
+
return image.convert("RGB")
|
77 |
+
|
78 |
+
|
79 |
+
def _transform(n_px):
|
80 |
+
return Compose([
|
81 |
+
Resize(n_px, interpolation=BICUBIC),
|
82 |
+
CenterCrop(n_px),
|
83 |
+
_convert_image_to_rgb,
|
84 |
+
ToTensor(),
|
85 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
86 |
+
])
|
87 |
+
|
88 |
+
|
89 |
+
def available_models() -> List[str]:
|
90 |
+
"""Returns the names of available CLIP models"""
|
91 |
+
return list(_MODELS.keys())
|
92 |
+
|
93 |
+
|
94 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
|
95 |
+
"""Load a CLIP model
|
96 |
+
|
97 |
+
Parameters
|
98 |
+
----------
|
99 |
+
name : str
|
100 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
101 |
+
|
102 |
+
device : Union[str, torch.device]
|
103 |
+
The device to put the loaded model
|
104 |
+
|
105 |
+
jit : bool
|
106 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
107 |
+
|
108 |
+
download_root: str
|
109 |
+
path to download the model files; by default, it uses "~/.cache/clip"
|
110 |
+
|
111 |
+
Returns
|
112 |
+
-------
|
113 |
+
model : torch.nn.Module
|
114 |
+
The CLIP model
|
115 |
+
|
116 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
117 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
118 |
+
"""
|
119 |
+
if name in _MODELS:
|
120 |
+
model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
|
121 |
+
elif os.path.isfile(name):
|
122 |
+
model_path = name
|
123 |
+
else:
|
124 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
125 |
+
|
126 |
+
with open(model_path, 'rb') as opened_file:
|
127 |
+
try:
|
128 |
+
# loading JIT archive
|
129 |
+
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
|
130 |
+
state_dict = None
|
131 |
+
except RuntimeError:
|
132 |
+
# loading saved state dict
|
133 |
+
if jit:
|
134 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
135 |
+
jit = False
|
136 |
+
state_dict = torch.load(opened_file, map_location="cpu")
|
137 |
+
|
138 |
+
if not jit:
|
139 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
140 |
+
if str(device) == "cpu":
|
141 |
+
model.float()
|
142 |
+
return model, _transform(model.visual.input_resolution)
|
143 |
+
|
144 |
+
# patch the device names
|
145 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
146 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
147 |
+
|
148 |
+
def _node_get(node: torch._C.Node, key: str):
|
149 |
+
"""Gets attributes of a node which is polymorphic over return type.
|
150 |
+
|
151 |
+
From https://github.com/pytorch/pytorch/pull/82628
|
152 |
+
"""
|
153 |
+
sel = node.kindOf(key)
|
154 |
+
return getattr(node, sel)(key)
|
155 |
+
|
156 |
+
def patch_device(module):
|
157 |
+
try:
|
158 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
159 |
+
except RuntimeError:
|
160 |
+
graphs = []
|
161 |
+
|
162 |
+
if hasattr(module, "forward1"):
|
163 |
+
graphs.append(module.forward1.graph)
|
164 |
+
|
165 |
+
for graph in graphs:
|
166 |
+
for node in graph.findAllNodes("prim::Constant"):
|
167 |
+
if "value" in node.attributeNames() and str(_node_get(node, "value")).startswith("cuda"):
|
168 |
+
node.copyAttributes(device_node)
|
169 |
+
|
170 |
+
model.apply(patch_device)
|
171 |
+
patch_device(model.encode_image)
|
172 |
+
patch_device(model.encode_text)
|
173 |
+
|
174 |
+
# patch dtype to float32 on CPU
|
175 |
+
if str(device) == "cpu":
|
176 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
177 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
178 |
+
float_node = float_input.node()
|
179 |
+
|
180 |
+
def patch_float(module):
|
181 |
+
try:
|
182 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
183 |
+
except RuntimeError:
|
184 |
+
graphs = []
|
185 |
+
|
186 |
+
if hasattr(module, "forward1"):
|
187 |
+
graphs.append(module.forward1.graph)
|
188 |
+
|
189 |
+
for graph in graphs:
|
190 |
+
for node in graph.findAllNodes("aten::to"):
|
191 |
+
inputs = list(node.inputs())
|
192 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
193 |
+
if _node_get(inputs[i].node(), "value") == 5:
|
194 |
+
inputs[i].node().copyAttributes(float_node)
|
195 |
+
|
196 |
+
model.apply(patch_float)
|
197 |
+
patch_float(model.encode_image)
|
198 |
+
patch_float(model.encode_text)
|
199 |
+
|
200 |
+
model.float()
|
201 |
+
|
202 |
+
return model, _transform(model.input_resolution.item())
|
203 |
+
|
204 |
+
|
205 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
|
206 |
+
"""
|
207 |
+
Returns the tokenized representation of given input string(s)
|
208 |
+
|
209 |
+
Parameters
|
210 |
+
----------
|
211 |
+
texts : Union[str, List[str]]
|
212 |
+
An input string or a list of input strings to tokenize
|
213 |
+
|
214 |
+
context_length : int
|
215 |
+
The context length to use; all CLIP models use 77 as the context length
|
216 |
+
|
217 |
+
truncate: bool
|
218 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
219 |
+
|
220 |
+
Returns
|
221 |
+
-------
|
222 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
|
223 |
+
We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
|
224 |
+
"""
|
225 |
+
if isinstance(texts, str):
|
226 |
+
texts = [texts]
|
227 |
+
|
228 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
229 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
230 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
231 |
+
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
|
232 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
233 |
+
else:
|
234 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
|
235 |
+
|
236 |
+
for i, tokens in enumerate(all_tokens):
|
237 |
+
if len(tokens) > context_length:
|
238 |
+
if truncate:
|
239 |
+
tokens = tokens[:context_length]
|
240 |
+
tokens[-1] = eot_token
|
241 |
+
else:
|
242 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
243 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
244 |
+
|
245 |
+
return result
|
isegm/model/modeling/clip/model.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
self.relu1 = nn.ReLU(inplace=True)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
22 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
23 |
+
self.relu2 = nn.ReLU(inplace=True)
|
24 |
+
|
25 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
26 |
+
|
27 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
28 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
29 |
+
self.relu3 = nn.ReLU(inplace=True)
|
30 |
+
|
31 |
+
self.downsample = None
|
32 |
+
self.stride = stride
|
33 |
+
|
34 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
35 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
36 |
+
self.downsample = nn.Sequential(OrderedDict([
|
37 |
+
("-1", nn.AvgPool2d(stride)),
|
38 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
39 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
40 |
+
]))
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor):
|
43 |
+
identity = x
|
44 |
+
|
45 |
+
out = self.relu1(self.bn1(self.conv1(x)))
|
46 |
+
out = self.relu2(self.bn2(self.conv2(out)))
|
47 |
+
out = self.avgpool(out)
|
48 |
+
out = self.bn3(self.conv3(out))
|
49 |
+
|
50 |
+
if self.downsample is not None:
|
51 |
+
identity = self.downsample(x)
|
52 |
+
|
53 |
+
out += identity
|
54 |
+
out = self.relu3(out)
|
55 |
+
return out
|
56 |
+
|
57 |
+
|
58 |
+
class AttentionPool2d(nn.Module):
|
59 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
60 |
+
super().__init__()
|
61 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
62 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
64 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
65 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
66 |
+
self.num_heads = num_heads
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
|
70 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
71 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
72 |
+
x, _ = F.multi_head_attention_forward(
|
73 |
+
query=x[:1], key=x, value=x,
|
74 |
+
embed_dim_to_check=x.shape[-1],
|
75 |
+
num_heads=self.num_heads,
|
76 |
+
q_proj_weight=self.q_proj.weight,
|
77 |
+
k_proj_weight=self.k_proj.weight,
|
78 |
+
v_proj_weight=self.v_proj.weight,
|
79 |
+
in_proj_weight=None,
|
80 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
81 |
+
bias_k=None,
|
82 |
+
bias_v=None,
|
83 |
+
add_zero_attn=False,
|
84 |
+
dropout_p=0,
|
85 |
+
out_proj_weight=self.c_proj.weight,
|
86 |
+
out_proj_bias=self.c_proj.bias,
|
87 |
+
use_separate_proj_weight=True,
|
88 |
+
training=self.training,
|
89 |
+
need_weights=False
|
90 |
+
)
|
91 |
+
return x.squeeze(0)
|
92 |
+
|
93 |
+
|
94 |
+
class ModifiedResNet(nn.Module):
|
95 |
+
"""
|
96 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
97 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
98 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
99 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
100 |
+
"""
|
101 |
+
|
102 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
103 |
+
super().__init__()
|
104 |
+
self.output_dim = output_dim
|
105 |
+
self.input_resolution = input_resolution
|
106 |
+
|
107 |
+
# the 3-layer stem
|
108 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
109 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
110 |
+
self.relu1 = nn.ReLU(inplace=True)
|
111 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
112 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
113 |
+
self.relu2 = nn.ReLU(inplace=True)
|
114 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
115 |
+
self.bn3 = nn.BatchNorm2d(width)
|
116 |
+
self.relu3 = nn.ReLU(inplace=True)
|
117 |
+
self.avgpool = nn.AvgPool2d(2)
|
118 |
+
|
119 |
+
# residual layers
|
120 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
121 |
+
self.layer1 = self._make_layer(width, layers[0])
|
122 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
123 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
124 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
125 |
+
|
126 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
127 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
128 |
+
|
129 |
+
def _make_layer(self, planes, blocks, stride=1):
|
130 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
131 |
+
|
132 |
+
self._inplanes = planes * Bottleneck.expansion
|
133 |
+
for _ in range(1, blocks):
|
134 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
135 |
+
|
136 |
+
return nn.Sequential(*layers)
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
def stem(x):
|
140 |
+
x = self.relu1(self.bn1(self.conv1(x)))
|
141 |
+
x = self.relu2(self.bn2(self.conv2(x)))
|
142 |
+
x = self.relu3(self.bn3(self.conv3(x)))
|
143 |
+
x = self.avgpool(x)
|
144 |
+
return x
|
145 |
+
|
146 |
+
x = x.type(self.conv1.weight.dtype)
|
147 |
+
x = stem(x)
|
148 |
+
x = self.layer1(x)
|
149 |
+
x = self.layer2(x)
|
150 |
+
x = self.layer3(x)
|
151 |
+
x = self.layer4(x)
|
152 |
+
x = self.attnpool(x)
|
153 |
+
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class LayerNorm(nn.LayerNorm):
|
158 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
159 |
+
|
160 |
+
def forward(self, x: torch.Tensor):
|
161 |
+
orig_type = x.dtype
|
162 |
+
ret = super().forward(x.type(torch.float32))
|
163 |
+
return ret.type(orig_type)
|
164 |
+
|
165 |
+
|
166 |
+
class QuickGELU(nn.Module):
|
167 |
+
def forward(self, x: torch.Tensor):
|
168 |
+
return x * torch.sigmoid(1.702 * x)
|
169 |
+
|
170 |
+
|
171 |
+
class ResidualAttentionBlock(nn.Module):
|
172 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
173 |
+
super().__init__()
|
174 |
+
|
175 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
176 |
+
self.ln_1 = LayerNorm(d_model)
|
177 |
+
self.mlp = nn.Sequential(OrderedDict([
|
178 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
179 |
+
("gelu", QuickGELU()),
|
180 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
181 |
+
]))
|
182 |
+
self.ln_2 = LayerNorm(d_model)
|
183 |
+
self.attn_mask = attn_mask
|
184 |
+
|
185 |
+
def attention(self, x: torch.Tensor):
|
186 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
187 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
188 |
+
|
189 |
+
def forward(self, x: torch.Tensor):
|
190 |
+
x = x + self.attention(self.ln_1(x))
|
191 |
+
x = x + self.mlp(self.ln_2(x))
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
class Transformer(nn.Module):
|
196 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
197 |
+
super().__init__()
|
198 |
+
self.width = width
|
199 |
+
self.layers = layers
|
200 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
201 |
+
|
202 |
+
def forward(self, x: torch.Tensor):
|
203 |
+
return self.resblocks(x)
|
204 |
+
|
205 |
+
|
206 |
+
class VisionTransformer(nn.Module):
|
207 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
208 |
+
super().__init__()
|
209 |
+
self.input_resolution = input_resolution
|
210 |
+
self.output_dim = output_dim
|
211 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
212 |
+
|
213 |
+
scale = width ** -0.5
|
214 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
215 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
216 |
+
self.ln_pre = LayerNorm(width)
|
217 |
+
|
218 |
+
self.transformer = Transformer(width, layers, heads)
|
219 |
+
|
220 |
+
self.ln_post = LayerNorm(width)
|
221 |
+
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
|
222 |
+
|
223 |
+
def forward(self, x: torch.Tensor):
|
224 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
225 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
226 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
227 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
228 |
+
x = x + self.positional_embedding.to(x.dtype)
|
229 |
+
x = self.ln_pre(x)
|
230 |
+
|
231 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
232 |
+
x = self.transformer(x)
|
233 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
234 |
+
|
235 |
+
x = self.ln_post(x[:, 0, :])
|
236 |
+
|
237 |
+
if self.proj is not None:
|
238 |
+
x = x @ self.proj
|
239 |
+
|
240 |
+
return x
|
241 |
+
|
242 |
+
|
243 |
+
class CLIP(nn.Module):
|
244 |
+
def __init__(self,
|
245 |
+
embed_dim: int,
|
246 |
+
# vision
|
247 |
+
image_resolution: int,
|
248 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
249 |
+
vision_width: int,
|
250 |
+
vision_patch_size: int,
|
251 |
+
# text
|
252 |
+
context_length: int,
|
253 |
+
vocab_size: int,
|
254 |
+
transformer_width: int,
|
255 |
+
transformer_heads: int,
|
256 |
+
transformer_layers: int
|
257 |
+
):
|
258 |
+
super().__init__()
|
259 |
+
|
260 |
+
self.context_length = context_length
|
261 |
+
|
262 |
+
if isinstance(vision_layers, (tuple, list)):
|
263 |
+
vision_heads = vision_width * 32 // 64
|
264 |
+
self.visual = ModifiedResNet(
|
265 |
+
layers=vision_layers,
|
266 |
+
output_dim=embed_dim,
|
267 |
+
heads=vision_heads,
|
268 |
+
input_resolution=image_resolution,
|
269 |
+
width=vision_width
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
vision_heads = vision_width // 64
|
273 |
+
self.visual = VisionTransformer(
|
274 |
+
input_resolution=image_resolution,
|
275 |
+
patch_size=vision_patch_size,
|
276 |
+
width=vision_width,
|
277 |
+
layers=vision_layers,
|
278 |
+
heads=vision_heads,
|
279 |
+
output_dim=embed_dim
|
280 |
+
)
|
281 |
+
|
282 |
+
self.transformer = Transformer(
|
283 |
+
width=transformer_width,
|
284 |
+
layers=transformer_layers,
|
285 |
+
heads=transformer_heads,
|
286 |
+
attn_mask=self.build_attention_mask()
|
287 |
+
)
|
288 |
+
|
289 |
+
self.vocab_size = vocab_size
|
290 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
291 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
292 |
+
self.ln_final = LayerNorm(transformer_width)
|
293 |
+
|
294 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
295 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
|
296 |
+
|
297 |
+
self.initialize_parameters()
|
298 |
+
|
299 |
+
def initialize_parameters(self):
|
300 |
+
nn.init.normal_(self.token_embedding.weight, std=0.02)
|
301 |
+
nn.init.normal_(self.positional_embedding, std=0.01)
|
302 |
+
|
303 |
+
if isinstance(self.visual, ModifiedResNet):
|
304 |
+
if self.visual.attnpool is not None:
|
305 |
+
std = self.visual.attnpool.c_proj.in_features ** -0.5
|
306 |
+
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
|
307 |
+
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
|
308 |
+
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
|
309 |
+
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
|
310 |
+
|
311 |
+
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
|
312 |
+
for name, param in resnet_block.named_parameters():
|
313 |
+
if name.endswith("bn3.weight"):
|
314 |
+
nn.init.zeros_(param)
|
315 |
+
|
316 |
+
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
|
317 |
+
attn_std = self.transformer.width ** -0.5
|
318 |
+
fc_std = (2 * self.transformer.width) ** -0.5
|
319 |
+
for block in self.transformer.resblocks:
|
320 |
+
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
|
321 |
+
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
|
322 |
+
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
|
323 |
+
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
|
324 |
+
|
325 |
+
if self.text_projection is not None:
|
326 |
+
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
|
327 |
+
|
328 |
+
def build_attention_mask(self):
|
329 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
330 |
+
# pytorch uses additive attention mask; fill with -inf
|
331 |
+
mask = torch.empty(self.context_length, self.context_length)
|
332 |
+
mask.fill_(float("-inf"))
|
333 |
+
mask.triu_(1) # zero out the lower diagonal
|
334 |
+
return mask
|
335 |
+
|
336 |
+
@property
|
337 |
+
def dtype(self):
|
338 |
+
return self.visual.conv1.weight.dtype
|
339 |
+
|
340 |
+
def encode_image(self, image):
|
341 |
+
return self.visual(image.type(self.dtype))
|
342 |
+
|
343 |
+
def encode_text(self, text):
|
344 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
345 |
+
|
346 |
+
x = x + self.positional_embedding.type(self.dtype)
|
347 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
348 |
+
x = self.transformer(x)
|
349 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
350 |
+
x = self.ln_final(x).type(self.dtype)
|
351 |
+
|
352 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
353 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
354 |
+
# x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
355 |
+
|
356 |
+
return x
|
357 |
+
|
358 |
+
def forward(self, image, text):
|
359 |
+
image_features = self.encode_image(image)
|
360 |
+
text_features = self.encode_text(text)
|
361 |
+
|
362 |
+
# normalized features
|
363 |
+
image_features = image_features / image_features.norm(dim=1, keepdim=True)
|
364 |
+
text_features = text_features / text_features.norm(dim=1, keepdim=True)
|
365 |
+
|
366 |
+
# cosine similarity as logits
|
367 |
+
logit_scale = self.logit_scale.exp()
|
368 |
+
logits_per_image = logit_scale * image_features @ text_features.t()
|
369 |
+
logits_per_text = logits_per_image.t()
|
370 |
+
|
371 |
+
# shape = [global_batch_size, global_batch_size]
|
372 |
+
return logits_per_image, logits_per_text
|
373 |
+
|
374 |
+
|
375 |
+
def convert_weights(model: nn.Module):
|
376 |
+
"""Convert applicable model parameters to fp16"""
|
377 |
+
|
378 |
+
def _convert_weights_to_fp16(l):
|
379 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
380 |
+
l.weight.data = l.weight.data.half()
|
381 |
+
if l.bias is not None:
|
382 |
+
l.bias.data = l.bias.data.half()
|
383 |
+
|
384 |
+
if isinstance(l, nn.MultiheadAttention):
|
385 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
386 |
+
tensor = getattr(l, attr)
|
387 |
+
if tensor is not None:
|
388 |
+
tensor.data = tensor.data.half()
|
389 |
+
|
390 |
+
for name in ["text_projection", "proj"]:
|
391 |
+
if hasattr(l, name):
|
392 |
+
attr = getattr(l, name)
|
393 |
+
if attr is not None:
|
394 |
+
attr.data = attr.data.half()
|
395 |
+
|
396 |
+
model.apply(_convert_weights_to_fp16)
|
397 |
+
|
398 |
+
|
399 |
+
def build_model(state_dict: dict):
|
400 |
+
vit = "visual.proj" in state_dict
|
401 |
+
|
402 |
+
if vit:
|
403 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
404 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
405 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
406 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
407 |
+
image_resolution = vision_patch_size * grid_size
|
408 |
+
else:
|
409 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
410 |
+
vision_layers = tuple(counts)
|
411 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
412 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
413 |
+
vision_patch_size = None
|
414 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
415 |
+
image_resolution = output_width * 32
|
416 |
+
|
417 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
418 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
419 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
420 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
421 |
+
transformer_heads = transformer_width // 64
|
422 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
|
423 |
+
|
424 |
+
model = CLIP(
|
425 |
+
embed_dim,
|
426 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
427 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
428 |
+
)
|
429 |
+
|
430 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
431 |
+
if key in state_dict:
|
432 |
+
del state_dict[key]
|
433 |
+
|
434 |
+
convert_weights(model)
|
435 |
+
model.load_state_dict(state_dict)
|
436 |
+
return model.eval()
|
isegm/model/modeling/clip/simple_tokenizer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
|
10 |
+
@lru_cache()
|
11 |
+
def default_bpe():
|
12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8+n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
|
38 |
+
def get_pairs(word):
|
39 |
+
"""Return set of symbol pairs in a word.
|
40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
41 |
+
"""
|
42 |
+
pairs = set()
|
43 |
+
prev_char = word[0]
|
44 |
+
for char in word[1:]:
|
45 |
+
pairs.add((prev_char, char))
|
46 |
+
prev_char = char
|
47 |
+
return pairs
|
48 |
+
|
49 |
+
|
50 |
+
def basic_clean(text):
|
51 |
+
text = ftfy.fix_text(text)
|
52 |
+
text = html.unescape(html.unescape(text))
|
53 |
+
return text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def whitespace_clean(text):
|
57 |
+
text = re.sub(r'\s+', ' ', text)
|
58 |
+
text = text.strip()
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
class SimpleTokenizer(object):
|
63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
64 |
+
self.byte_encoder = bytes_to_unicode()
|
65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
67 |
+
merges = merges[1:49152-256-2+1]
|
68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
69 |
+
vocab = list(bytes_to_unicode().values())
|
70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
71 |
+
for merge in merges:
|
72 |
+
vocab.append(''.join(merge))
|
73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
79 |
+
|
80 |
+
def bpe(self, token):
|
81 |
+
if token in self.cache:
|
82 |
+
return self.cache[token]
|
83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
84 |
+
pairs = get_pairs(word)
|
85 |
+
|
86 |
+
if not pairs:
|
87 |
+
return token+'</w>'
|
88 |
+
|
89 |
+
while True:
|
90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
91 |
+
if bigram not in self.bpe_ranks:
|
92 |
+
break
|
93 |
+
first, second = bigram
|
94 |
+
new_word = []
|
95 |
+
i = 0
|
96 |
+
while i < len(word):
|
97 |
+
try:
|
98 |
+
j = word.index(first, i)
|
99 |
+
new_word.extend(word[i:j])
|
100 |
+
i = j
|
101 |
+
except:
|
102 |
+
new_word.extend(word[i:])
|
103 |
+
break
|
104 |
+
|
105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
106 |
+
new_word.append(first+second)
|
107 |
+
i += 2
|
108 |
+
else:
|
109 |
+
new_word.append(word[i])
|
110 |
+
i += 1
|
111 |
+
new_word = tuple(new_word)
|
112 |
+
word = new_word
|
113 |
+
if len(word) == 1:
|
114 |
+
break
|
115 |
+
else:
|
116 |
+
pairs = get_pairs(word)
|
117 |
+
word = ' '.join(word)
|
118 |
+
self.cache[token] = word
|
119 |
+
return word
|
120 |
+
|
121 |
+
def encode(self, text):
|
122 |
+
bpe_tokens = []
|
123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
124 |
+
for token in re.findall(self.pat, text):
|
125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
127 |
+
return bpe_tokens
|
128 |
+
|
129 |
+
def decode(self, tokens):
|
130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
132 |
+
return text
|
isegm/model/modeling/clip_text_encoding.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from .clip import clip
|
4 |
+
|
5 |
+
class ClipTextEncoder(nn.Module):
|
6 |
+
def __init__(self, clip_enocder_name="ViT-B/32", embedding_dim=512, out_dim=768):
|
7 |
+
super().__init__()
|
8 |
+
assert clip_enocder_name in ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px']
|
9 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
self.model, self.preprocess = clip.load(clip_enocder_name, device=self.device)
|
11 |
+
|
12 |
+
# freeze model
|
13 |
+
for _, param in self.model.named_parameters():
|
14 |
+
param.requires_grad = False
|
15 |
+
self.out_proj = nn.Linear(embedding_dim, out_dim)
|
16 |
+
nn.init.zeros_(self.out_proj.bias)
|
17 |
+
|
18 |
+
@torch.no_grad()
|
19 |
+
def forward(self, prompt):
|
20 |
+
'''
|
21 |
+
prompt: text tokens
|
22 |
+
'''
|
23 |
+
text_features = self.model.encode_text(prompt).type(torch.float32)
|
24 |
+
# norm
|
25 |
+
# text_features /= text_features.norm(dim=-1, keepdim=True) # [bs, 1024]
|
26 |
+
# proj
|
27 |
+
text_features = self.out_proj(text_features)
|
28 |
+
return text_features
|
29 |
+
|
isegm/model/modeling/deeplab_v3.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import ExitStack
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from .basic_blocks import SeparableConv2d
|
8 |
+
from .resnet import ResNetBackbone
|
9 |
+
from isegm.model import ops
|
10 |
+
|
11 |
+
|
12 |
+
class DeepLabV3Plus(nn.Module):
|
13 |
+
def __init__(self, backbone='resnet50', norm_layer=nn.BatchNorm2d,
|
14 |
+
backbone_norm_layer=None,
|
15 |
+
ch=256,
|
16 |
+
project_dropout=0.5,
|
17 |
+
inference_mode=False,
|
18 |
+
**kwargs):
|
19 |
+
super(DeepLabV3Plus, self).__init__()
|
20 |
+
if backbone_norm_layer is None:
|
21 |
+
backbone_norm_layer = norm_layer
|
22 |
+
|
23 |
+
self.backbone_name = backbone
|
24 |
+
self.norm_layer = norm_layer
|
25 |
+
self.backbone_norm_layer = backbone_norm_layer
|
26 |
+
self.inference_mode = False
|
27 |
+
self.ch = ch
|
28 |
+
self.aspp_in_channels = 2048
|
29 |
+
self.skip_project_in_channels = 256 # layer 1 out_channels
|
30 |
+
|
31 |
+
self._kwargs = kwargs
|
32 |
+
if backbone == 'resnet34':
|
33 |
+
self.aspp_in_channels = 512
|
34 |
+
self.skip_project_in_channels = 64
|
35 |
+
|
36 |
+
self.backbone = ResNetBackbone(backbone=self.backbone_name, pretrained_base=False,
|
37 |
+
norm_layer=self.backbone_norm_layer, **kwargs)
|
38 |
+
|
39 |
+
self.head = _DeepLabHead(in_channels=ch + 32, mid_channels=ch, out_channels=ch,
|
40 |
+
norm_layer=self.norm_layer)
|
41 |
+
self.skip_project = _SkipProject(self.skip_project_in_channels, 32, norm_layer=self.norm_layer)
|
42 |
+
self.aspp = _ASPP(in_channels=self.aspp_in_channels,
|
43 |
+
atrous_rates=[12, 24, 36],
|
44 |
+
out_channels=ch,
|
45 |
+
project_dropout=project_dropout,
|
46 |
+
norm_layer=self.norm_layer)
|
47 |
+
|
48 |
+
if inference_mode:
|
49 |
+
self.set_prediction_mode()
|
50 |
+
|
51 |
+
def load_pretrained_weights(self):
|
52 |
+
pretrained = ResNetBackbone(backbone=self.backbone_name, pretrained_base=True,
|
53 |
+
norm_layer=self.backbone_norm_layer, **self._kwargs)
|
54 |
+
backbone_state_dict = self.backbone.state_dict()
|
55 |
+
pretrained_state_dict = pretrained.state_dict()
|
56 |
+
|
57 |
+
backbone_state_dict.update(pretrained_state_dict)
|
58 |
+
self.backbone.load_state_dict(backbone_state_dict)
|
59 |
+
|
60 |
+
if self.inference_mode:
|
61 |
+
for param in self.backbone.parameters():
|
62 |
+
param.requires_grad = False
|
63 |
+
|
64 |
+
def set_prediction_mode(self):
|
65 |
+
self.inference_mode = True
|
66 |
+
self.eval()
|
67 |
+
|
68 |
+
def forward(self, x, additional_features=None):
|
69 |
+
with ExitStack() as stack:
|
70 |
+
if self.inference_mode:
|
71 |
+
stack.enter_context(torch.no_grad())
|
72 |
+
|
73 |
+
c1, _, c3, c4 = self.backbone(x, additional_features)
|
74 |
+
c1 = self.skip_project(c1)
|
75 |
+
|
76 |
+
x = self.aspp(c4)
|
77 |
+
x = F.interpolate(x, c1.size()[2:], mode='bilinear', align_corners=True)
|
78 |
+
x = torch.cat((x, c1), dim=1)
|
79 |
+
x = self.head(x)
|
80 |
+
|
81 |
+
return x,
|
82 |
+
|
83 |
+
|
84 |
+
class _SkipProject(nn.Module):
|
85 |
+
def __init__(self, in_channels, out_channels, norm_layer=nn.BatchNorm2d):
|
86 |
+
super(_SkipProject, self).__init__()
|
87 |
+
_activation = ops.select_activation_function("relu")
|
88 |
+
|
89 |
+
self.skip_project = nn.Sequential(
|
90 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
|
91 |
+
norm_layer(out_channels),
|
92 |
+
_activation()
|
93 |
+
)
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
return self.skip_project(x)
|
97 |
+
|
98 |
+
|
99 |
+
class _DeepLabHead(nn.Module):
|
100 |
+
def __init__(self, out_channels, in_channels, mid_channels=256, norm_layer=nn.BatchNorm2d):
|
101 |
+
super(_DeepLabHead, self).__init__()
|
102 |
+
|
103 |
+
self.block = nn.Sequential(
|
104 |
+
SeparableConv2d(in_channels=in_channels, out_channels=mid_channels, dw_kernel=3,
|
105 |
+
dw_padding=1, activation='relu', norm_layer=norm_layer),
|
106 |
+
SeparableConv2d(in_channels=mid_channels, out_channels=mid_channels, dw_kernel=3,
|
107 |
+
dw_padding=1, activation='relu', norm_layer=norm_layer),
|
108 |
+
nn.Conv2d(in_channels=mid_channels, out_channels=out_channels, kernel_size=1)
|
109 |
+
)
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
return self.block(x)
|
113 |
+
|
114 |
+
|
115 |
+
class _ASPP(nn.Module):
|
116 |
+
def __init__(self, in_channels, atrous_rates, out_channels=256,
|
117 |
+
project_dropout=0.5, norm_layer=nn.BatchNorm2d):
|
118 |
+
super(_ASPP, self).__init__()
|
119 |
+
|
120 |
+
b0 = nn.Sequential(
|
121 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=False),
|
122 |
+
norm_layer(out_channels),
|
123 |
+
nn.ReLU()
|
124 |
+
)
|
125 |
+
|
126 |
+
rate1, rate2, rate3 = tuple(atrous_rates)
|
127 |
+
b1 = _ASPPConv(in_channels, out_channels, rate1, norm_layer)
|
128 |
+
b2 = _ASPPConv(in_channels, out_channels, rate2, norm_layer)
|
129 |
+
b3 = _ASPPConv(in_channels, out_channels, rate3, norm_layer)
|
130 |
+
b4 = _AsppPooling(in_channels, out_channels, norm_layer=norm_layer)
|
131 |
+
|
132 |
+
self.concurent = nn.ModuleList([b0, b1, b2, b3, b4])
|
133 |
+
|
134 |
+
project = [
|
135 |
+
nn.Conv2d(in_channels=5*out_channels, out_channels=out_channels,
|
136 |
+
kernel_size=1, bias=False),
|
137 |
+
norm_layer(out_channels),
|
138 |
+
nn.ReLU()
|
139 |
+
]
|
140 |
+
if project_dropout > 0:
|
141 |
+
project.append(nn.Dropout(project_dropout))
|
142 |
+
self.project = nn.Sequential(*project)
|
143 |
+
|
144 |
+
def forward(self, x):
|
145 |
+
x = torch.cat([block(x) for block in self.concurent], dim=1)
|
146 |
+
|
147 |
+
return self.project(x)
|
148 |
+
|
149 |
+
|
150 |
+
class _AsppPooling(nn.Module):
|
151 |
+
def __init__(self, in_channels, out_channels, norm_layer):
|
152 |
+
super(_AsppPooling, self).__init__()
|
153 |
+
|
154 |
+
self.gap = nn.Sequential(
|
155 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
156 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
|
157 |
+
kernel_size=1, bias=False),
|
158 |
+
norm_layer(out_channels),
|
159 |
+
nn.ReLU()
|
160 |
+
)
|
161 |
+
|
162 |
+
def forward(self, x):
|
163 |
+
pool = self.gap(x)
|
164 |
+
return F.interpolate(pool, x.size()[2:], mode='bilinear', align_corners=True)
|
165 |
+
|
166 |
+
|
167 |
+
def _ASPPConv(in_channels, out_channels, atrous_rate, norm_layer):
|
168 |
+
block = nn.Sequential(
|
169 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
|
170 |
+
kernel_size=3, padding=atrous_rate,
|
171 |
+
dilation=atrous_rate, bias=False),
|
172 |
+
norm_layer(out_channels),
|
173 |
+
nn.ReLU()
|
174 |
+
)
|
175 |
+
|
176 |
+
return block
|
isegm/model/modeling/hrformer.py
ADDED
@@ -0,0 +1,487 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
2 |
+
## Created by: RainbowSecret
|
3 |
+
## Microsoft Research
|
4 | |
5 |
+
## Copyright (c) 2021
|
6 |
+
##
|
7 |
+
## This source code is licensed under the MIT-style license found in the
|
8 |
+
## LICENSE file in the root directory of this source tree
|
9 |
+
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
# from .hrformer_helper.backbone_selector import BackboneSelector
|
18 |
+
from .hrformer_helper.hrt.module_helper import ModuleHelper
|
19 |
+
from .hrformer_helper.hrt.modules.spatial_ocr_block import SpatialGather_Module, SpatialOCR_Module
|
20 |
+
|
21 |
+
from .hrformer_helper.hrt.logger import Logger as Log
|
22 |
+
from .hrformer_helper.hrt.hrt_backbone import HRTBackbone, HRTBackbone_v2
|
23 |
+
|
24 |
+
|
25 |
+
class BackboneSelector(object):
|
26 |
+
def __init__(self, configer):
|
27 |
+
self.configer = configer
|
28 |
+
|
29 |
+
def get_backbone(self, **params):
|
30 |
+
backbone = self.configer.get("network", "backbone")
|
31 |
+
|
32 |
+
model = None
|
33 |
+
# if (
|
34 |
+
# "resnet" in backbone or "resnext" in backbone or "resnest" in backbone
|
35 |
+
# ) and "senet" not in backbone:
|
36 |
+
# model = ResNetBackbone(self.configer)(**params)
|
37 |
+
|
38 |
+
if "hrt" in backbone:
|
39 |
+
model = HRTBackbone(self.configer)(**params)
|
40 |
+
pass
|
41 |
+
|
42 |
+
# elif "hrnet" in backbone:
|
43 |
+
# model = HRNetBackbone(self.configer)(**params)
|
44 |
+
|
45 |
+
# elif "swin" in backbone:
|
46 |
+
# model = SwinTransformerBackbone(self.configer)(**params)
|
47 |
+
|
48 |
+
else:
|
49 |
+
Log.error("Backbone {} is invalid.".format(backbone))
|
50 |
+
exit(1)
|
51 |
+
|
52 |
+
return model
|
53 |
+
|
54 |
+
|
55 |
+
class HRT_B_OCR_V3(nn.Module):
|
56 |
+
def __init__(self, num_classes, in_ch=3, backbone='hrt_base', bn_type="torchbn", pretrained=None):
|
57 |
+
super(HRT_B_OCR_V3, self).__init__()
|
58 |
+
self.num_classes = num_classes
|
59 |
+
self.bn_type = bn_type
|
60 |
+
self.backbone = HRTBackbone_v2(backbone, pretrained, in_ch)()
|
61 |
+
|
62 |
+
in_channels = 1170
|
63 |
+
hidden_dim = 512
|
64 |
+
group_channel = math.gcd(in_channels, hidden_dim)
|
65 |
+
self.conv3x3 = nn.Sequential(
|
66 |
+
nn.Conv2d(
|
67 |
+
in_channels,
|
68 |
+
hidden_dim,
|
69 |
+
kernel_size=7,
|
70 |
+
stride=1,
|
71 |
+
padding=3,
|
72 |
+
groups=group_channel,
|
73 |
+
),
|
74 |
+
ModuleHelper.BNReLU(
|
75 |
+
hidden_dim, bn_type=self.bn_type
|
76 |
+
),
|
77 |
+
)
|
78 |
+
self.ocr_gather_head = SpatialGather_Module(self.num_classes)
|
79 |
+
self.ocr_distri_head = SpatialOCR_Module(
|
80 |
+
in_channels=hidden_dim,
|
81 |
+
key_channels=hidden_dim // 2,
|
82 |
+
out_channels=hidden_dim,
|
83 |
+
scale=1,
|
84 |
+
dropout=0.05,
|
85 |
+
bn_type=self.bn_type,
|
86 |
+
)
|
87 |
+
self.cls_head = nn.Conv2d(
|
88 |
+
hidden_dim, self.num_classes, kernel_size=1, stride=1, padding=0, bias=True
|
89 |
+
)
|
90 |
+
self.aux_head = nn.Sequential(
|
91 |
+
nn.Conv2d(
|
92 |
+
in_channels,
|
93 |
+
hidden_dim,
|
94 |
+
kernel_size=7,
|
95 |
+
stride=1,
|
96 |
+
padding=3,
|
97 |
+
groups=group_channel,
|
98 |
+
),
|
99 |
+
ModuleHelper.BNReLU(
|
100 |
+
hidden_dim, bn_type=self.bn_type
|
101 |
+
),
|
102 |
+
nn.Conv2d(
|
103 |
+
hidden_dim,
|
104 |
+
self.num_classes,
|
105 |
+
kernel_size=1,
|
106 |
+
stride=1,
|
107 |
+
padding=0,
|
108 |
+
bias=True,
|
109 |
+
),
|
110 |
+
)
|
111 |
+
|
112 |
+
def forward(self, x_):
|
113 |
+
x = self.backbone(x_)
|
114 |
+
_, _, h, w = x[0].size()
|
115 |
+
|
116 |
+
feat1 = x[0]
|
117 |
+
feat2 = F.interpolate(x[1], size=(h, w), mode="bilinear", align_corners=True)
|
118 |
+
feat3 = F.interpolate(x[2], size=(h, w), mode="bilinear", align_corners=True)
|
119 |
+
feat4 = F.interpolate(x[3], size=(h, w), mode="bilinear", align_corners=True)
|
120 |
+
|
121 |
+
feats = torch.cat([feat1, feat2, feat3, feat4], 1)
|
122 |
+
out_aux = self.aux_head(feats)
|
123 |
+
|
124 |
+
feats = self.conv3x3(feats)
|
125 |
+
|
126 |
+
context = self.ocr_gather_head(feats, out_aux)
|
127 |
+
feats = self.ocr_distri_head(feats, context)
|
128 |
+
|
129 |
+
out = self.cls_head(feats)
|
130 |
+
|
131 |
+
out_aux = F.interpolate(
|
132 |
+
out_aux, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
133 |
+
)
|
134 |
+
out = F.interpolate(
|
135 |
+
out, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
136 |
+
)
|
137 |
+
return out_aux, out
|
138 |
+
|
139 |
+
|
140 |
+
class HRT_S_OCR_V2(nn.Module):
|
141 |
+
def __init__(self, num_classes, backbone='hrt_small', bn_type="torchbn", pretrained=None):
|
142 |
+
super(HRT_S_OCR_V2, self).__init__()
|
143 |
+
self.num_classes = num_classes
|
144 |
+
self.bn_type = bn_type
|
145 |
+
self.backbone = HRTBackbone_v2(backbone, pretrained)()
|
146 |
+
|
147 |
+
in_channels = 480
|
148 |
+
self.conv3x3 = nn.Sequential(
|
149 |
+
nn.Conv2d(in_channels, 512, kernel_size=3, stride=1, padding=1),
|
150 |
+
ModuleHelper.BNReLU(512, bn_type=self.bn_type),
|
151 |
+
)
|
152 |
+
self.ocr_gather_head = SpatialGather_Module(self.num_classes)
|
153 |
+
self.ocr_distri_head = SpatialOCR_Module(
|
154 |
+
in_channels=512,
|
155 |
+
key_channels=256,
|
156 |
+
out_channels=512,
|
157 |
+
scale=1,
|
158 |
+
dropout=0.05,
|
159 |
+
bn_type=self.bn_type,
|
160 |
+
)
|
161 |
+
self.cls_head = nn.Conv2d(
|
162 |
+
512, self.num_classes, kernel_size=1, stride=1, padding=0, bias=True
|
163 |
+
)
|
164 |
+
self.aux_head = nn.Sequential(
|
165 |
+
nn.Conv2d(in_channels, 512, kernel_size=3, stride=1, padding=1),
|
166 |
+
ModuleHelper.BNReLU(512, bn_type=self.bn_type),
|
167 |
+
nn.Conv2d(
|
168 |
+
512, self.num_classes, kernel_size=1, stride=1, padding=0, bias=True
|
169 |
+
),
|
170 |
+
)
|
171 |
+
|
172 |
+
def forward(self, x_):
|
173 |
+
x = self.backbone(x_)
|
174 |
+
_, _, h, w = x[0].size()
|
175 |
+
|
176 |
+
feat1 = x[0]
|
177 |
+
feat2 = F.interpolate(x[1], size=(h, w), mode="bilinear", align_corners=True)
|
178 |
+
feat3 = F.interpolate(x[2], size=(h, w), mode="bilinear", align_corners=True)
|
179 |
+
feat4 = F.interpolate(x[3], size=(h, w), mode="bilinear", align_corners=True)
|
180 |
+
|
181 |
+
feats = torch.cat([feat1, feat2, feat3, feat4], 1)
|
182 |
+
out_aux = self.aux_head(feats)
|
183 |
+
|
184 |
+
feats = self.conv3x3(feats)
|
185 |
+
|
186 |
+
context = self.ocr_gather_head(feats, out_aux)
|
187 |
+
feats = self.ocr_distri_head(feats, context)
|
188 |
+
|
189 |
+
out = self.cls_head(feats)
|
190 |
+
|
191 |
+
out_aux = F.interpolate(
|
192 |
+
out_aux, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
193 |
+
)
|
194 |
+
out = F.interpolate(
|
195 |
+
out, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
196 |
+
)
|
197 |
+
return out_aux, out
|
198 |
+
|
199 |
+
|
200 |
+
class HRT_SMALL_OCR_V2(nn.Module):
|
201 |
+
def __init__(self, configer):
|
202 |
+
super(HRT_SMALL_OCR_V2, self).__init__()
|
203 |
+
self.configer = configer
|
204 |
+
self.num_classes = self.configer.get("data", "num_classes")
|
205 |
+
self.backbone = BackboneSelector(configer).get_backbone()
|
206 |
+
|
207 |
+
in_channels = 480
|
208 |
+
self.conv3x3 = nn.Sequential(
|
209 |
+
nn.Conv2d(in_channels, 512, kernel_size=3, stride=1, padding=1),
|
210 |
+
ModuleHelper.BNReLU(512, bn_type=self.configer.get("network", "bn_type")),
|
211 |
+
)
|
212 |
+
self.ocr_gather_head = SpatialGather_Module(self.num_classes)
|
213 |
+
self.ocr_distri_head = SpatialOCR_Module(
|
214 |
+
in_channels=512,
|
215 |
+
key_channels=256,
|
216 |
+
out_channels=512,
|
217 |
+
scale=1,
|
218 |
+
dropout=0.05,
|
219 |
+
bn_type=self.configer.get("network", "bn_type"),
|
220 |
+
)
|
221 |
+
self.cls_head = nn.Conv2d(
|
222 |
+
512, self.num_classes, kernel_size=1, stride=1, padding=0, bias=True
|
223 |
+
)
|
224 |
+
self.aux_head = nn.Sequential(
|
225 |
+
nn.Conv2d(in_channels, 512, kernel_size=3, stride=1, padding=1),
|
226 |
+
ModuleHelper.BNReLU(512, bn_type=self.configer.get("network", "bn_type")),
|
227 |
+
nn.Conv2d(
|
228 |
+
512, self.num_classes, kernel_size=1, stride=1, padding=0, bias=True
|
229 |
+
),
|
230 |
+
)
|
231 |
+
|
232 |
+
def forward(self, x_):
|
233 |
+
x = self.backbone(x_)
|
234 |
+
_, _, h, w = x[0].size()
|
235 |
+
|
236 |
+
feat1 = x[0]
|
237 |
+
feat2 = F.interpolate(x[1], size=(h, w), mode="bilinear", align_corners=True)
|
238 |
+
feat3 = F.interpolate(x[2], size=(h, w), mode="bilinear", align_corners=True)
|
239 |
+
feat4 = F.interpolate(x[3], size=(h, w), mode="bilinear", align_corners=True)
|
240 |
+
|
241 |
+
feats = torch.cat([feat1, feat2, feat3, feat4], 1)
|
242 |
+
out_aux = self.aux_head(feats)
|
243 |
+
|
244 |
+
feats = self.conv3x3(feats)
|
245 |
+
|
246 |
+
context = self.ocr_gather_head(feats, out_aux)
|
247 |
+
feats = self.ocr_distri_head(feats, context)
|
248 |
+
|
249 |
+
out = self.cls_head(feats)
|
250 |
+
|
251 |
+
out_aux = F.interpolate(
|
252 |
+
out_aux, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
253 |
+
)
|
254 |
+
out = F.interpolate(
|
255 |
+
out, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
256 |
+
)
|
257 |
+
return out_aux, out
|
258 |
+
|
259 |
+
|
260 |
+
class HRT_BASE_OCR_V2(nn.Module):
|
261 |
+
def __init__(self, configer):
|
262 |
+
super(HRT_BASE_OCR_V2, self).__init__()
|
263 |
+
self.configer = configer
|
264 |
+
self.num_classes = self.configer.get("data", "num_classes")
|
265 |
+
self.backbone = BackboneSelector(configer).get_backbone()
|
266 |
+
|
267 |
+
in_channels = 1170
|
268 |
+
self.conv3x3 = nn.Sequential(
|
269 |
+
nn.Conv2d(in_channels, 512, kernel_size=3, stride=1, padding=1),
|
270 |
+
ModuleHelper.BNReLU(512, bn_type=self.configer.get("network", "bn_type")),
|
271 |
+
)
|
272 |
+
self.ocr_gather_head = SpatialGather_Module(self.num_classes)
|
273 |
+
self.ocr_distri_head = SpatialOCR_Module(
|
274 |
+
in_channels=512,
|
275 |
+
key_channels=256,
|
276 |
+
out_channels=512,
|
277 |
+
scale=1,
|
278 |
+
dropout=0.05,
|
279 |
+
bn_type=self.configer.get("network", "bn_type"),
|
280 |
+
)
|
281 |
+
self.cls_head = nn.Conv2d(
|
282 |
+
512, self.num_classes, kernel_size=1, stride=1, padding=0, bias=True
|
283 |
+
)
|
284 |
+
self.aux_head = nn.Sequential(
|
285 |
+
nn.Conv2d(in_channels, 512, kernel_size=3, stride=1, padding=1),
|
286 |
+
ModuleHelper.BNReLU(512, bn_type=self.configer.get("network", "bn_type")),
|
287 |
+
nn.Conv2d(
|
288 |
+
512, self.num_classes, kernel_size=1, stride=1, padding=0, bias=True
|
289 |
+
),
|
290 |
+
)
|
291 |
+
|
292 |
+
def forward(self, x_):
|
293 |
+
x = self.backbone(x_)
|
294 |
+
_, _, h, w = x[0].size()
|
295 |
+
|
296 |
+
feat1 = x[0]
|
297 |
+
feat2 = F.interpolate(x[1], size=(h, w), mode="bilinear", align_corners=True)
|
298 |
+
feat3 = F.interpolate(x[2], size=(h, w), mode="bilinear", align_corners=True)
|
299 |
+
feat4 = F.interpolate(x[3], size=(h, w), mode="bilinear", align_corners=True)
|
300 |
+
|
301 |
+
feats = torch.cat([feat1, feat2, feat3, feat4], 1)
|
302 |
+
out_aux = self.aux_head(feats)
|
303 |
+
|
304 |
+
feats = self.conv3x3(feats)
|
305 |
+
|
306 |
+
context = self.ocr_gather_head(feats, out_aux)
|
307 |
+
feats = self.ocr_distri_head(feats, context)
|
308 |
+
|
309 |
+
out = self.cls_head(feats)
|
310 |
+
|
311 |
+
out_aux = F.interpolate(
|
312 |
+
out_aux, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
313 |
+
)
|
314 |
+
out = F.interpolate(
|
315 |
+
out, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
316 |
+
)
|
317 |
+
return out_aux, out
|
318 |
+
|
319 |
+
|
320 |
+
class HRT_SMALL_OCR_V3(nn.Module):
|
321 |
+
def __init__(self, configer):
|
322 |
+
super(HRT_SMALL_OCR_V3, self).__init__()
|
323 |
+
self.configer = configer
|
324 |
+
self.num_classes = self.configer.get("data", "num_classes")
|
325 |
+
self.backbone = BackboneSelector(configer).get_backbone()
|
326 |
+
|
327 |
+
in_channels = 480
|
328 |
+
hidden_dim = 512
|
329 |
+
group_channel = math.gcd(in_channels, hidden_dim)
|
330 |
+
self.conv3x3 = nn.Sequential(
|
331 |
+
nn.Conv2d(
|
332 |
+
in_channels,
|
333 |
+
hidden_dim,
|
334 |
+
kernel_size=7,
|
335 |
+
stride=1,
|
336 |
+
padding=3,
|
337 |
+
groups=group_channel,
|
338 |
+
),
|
339 |
+
ModuleHelper.BNReLU(
|
340 |
+
hidden_dim, bn_type=self.configer.get("network", "bn_type")
|
341 |
+
),
|
342 |
+
)
|
343 |
+
self.ocr_gather_head = SpatialGather_Module(self.num_classes)
|
344 |
+
self.ocr_distri_head = SpatialOCR_Module(
|
345 |
+
in_channels=hidden_dim,
|
346 |
+
key_channels=hidden_dim // 2,
|
347 |
+
out_channels=hidden_dim,
|
348 |
+
scale=1,
|
349 |
+
dropout=0.05,
|
350 |
+
bn_type=self.configer.get("network", "bn_type"),
|
351 |
+
)
|
352 |
+
self.cls_head = nn.Conv2d(
|
353 |
+
hidden_dim, self.num_classes, kernel_size=1, stride=1, padding=0, bias=True
|
354 |
+
)
|
355 |
+
self.aux_head = nn.Sequential(
|
356 |
+
nn.Conv2d(
|
357 |
+
in_channels,
|
358 |
+
hidden_dim,
|
359 |
+
kernel_size=7,
|
360 |
+
stride=1,
|
361 |
+
padding=3,
|
362 |
+
groups=group_channel,
|
363 |
+
),
|
364 |
+
ModuleHelper.BNReLU(
|
365 |
+
hidden_dim, bn_type=self.configer.get("network", "bn_type")
|
366 |
+
),
|
367 |
+
nn.Conv2d(
|
368 |
+
hidden_dim,
|
369 |
+
self.num_classes,
|
370 |
+
kernel_size=1,
|
371 |
+
stride=1,
|
372 |
+
padding=0,
|
373 |
+
bias=True,
|
374 |
+
),
|
375 |
+
)
|
376 |
+
|
377 |
+
def forward(self, x_):
|
378 |
+
x = self.backbone(x_)
|
379 |
+
_, _, h, w = x[0].size()
|
380 |
+
|
381 |
+
feat1 = x[0]
|
382 |
+
feat2 = F.interpolate(x[1], size=(h, w), mode="bilinear", align_corners=True)
|
383 |
+
feat3 = F.interpolate(x[2], size=(h, w), mode="bilinear", align_corners=True)
|
384 |
+
feat4 = F.interpolate(x[3], size=(h, w), mode="bilinear", align_corners=True)
|
385 |
+
|
386 |
+
feats = torch.cat([feat1, feat2, feat3, feat4], 1)
|
387 |
+
out_aux = self.aux_head(feats)
|
388 |
+
|
389 |
+
feats = self.conv3x3(feats)
|
390 |
+
|
391 |
+
context = self.ocr_gather_head(feats, out_aux)
|
392 |
+
feats = self.ocr_distri_head(feats, context)
|
393 |
+
|
394 |
+
out = self.cls_head(feats)
|
395 |
+
|
396 |
+
out_aux = F.interpolate(
|
397 |
+
out_aux, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
398 |
+
)
|
399 |
+
out = F.interpolate(
|
400 |
+
out, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
401 |
+
)
|
402 |
+
return out_aux, out
|
403 |
+
|
404 |
+
|
405 |
+
class HRT_BASE_OCR_V3(nn.Module):
|
406 |
+
def __init__(self, configer):
|
407 |
+
super(HRT_BASE_OCR_V3, self).__init__()
|
408 |
+
self.configer = configer
|
409 |
+
self.num_classes = self.configer.get("data", "num_classes")
|
410 |
+
self.backbone = BackboneSelector(configer).get_backbone()
|
411 |
+
|
412 |
+
in_channels = 1170
|
413 |
+
hidden_dim = 512
|
414 |
+
group_channel = math.gcd(in_channels, hidden_dim)
|
415 |
+
self.conv3x3 = nn.Sequential(
|
416 |
+
nn.Conv2d(
|
417 |
+
in_channels,
|
418 |
+
hidden_dim,
|
419 |
+
kernel_size=7,
|
420 |
+
stride=1,
|
421 |
+
padding=3,
|
422 |
+
groups=group_channel,
|
423 |
+
),
|
424 |
+
ModuleHelper.BNReLU(
|
425 |
+
hidden_dim, bn_type=self.configer.get("network", "bn_type")
|
426 |
+
),
|
427 |
+
)
|
428 |
+
self.ocr_gather_head = SpatialGather_Module(self.num_classes)
|
429 |
+
self.ocr_distri_head = SpatialOCR_Module(
|
430 |
+
in_channels=hidden_dim,
|
431 |
+
key_channels=hidden_dim // 2,
|
432 |
+
out_channels=hidden_dim,
|
433 |
+
scale=1,
|
434 |
+
dropout=0.05,
|
435 |
+
bn_type=self.configer.get("network", "bn_type"),
|
436 |
+
)
|
437 |
+
self.cls_head = nn.Conv2d(
|
438 |
+
hidden_dim, self.num_classes, kernel_size=1, stride=1, padding=0, bias=True
|
439 |
+
)
|
440 |
+
self.aux_head = nn.Sequential(
|
441 |
+
nn.Conv2d(
|
442 |
+
in_channels,
|
443 |
+
hidden_dim,
|
444 |
+
kernel_size=7,
|
445 |
+
stride=1,
|
446 |
+
padding=3,
|
447 |
+
groups=group_channel,
|
448 |
+
),
|
449 |
+
ModuleHelper.BNReLU(
|
450 |
+
hidden_dim, bn_type=self.configer.get("network", "bn_type")
|
451 |
+
),
|
452 |
+
nn.Conv2d(
|
453 |
+
hidden_dim,
|
454 |
+
self.num_classes,
|
455 |
+
kernel_size=1,
|
456 |
+
stride=1,
|
457 |
+
padding=0,
|
458 |
+
bias=True,
|
459 |
+
),
|
460 |
+
)
|
461 |
+
|
462 |
+
def forward(self, x_):
|
463 |
+
x = self.backbone(x_)
|
464 |
+
_, _, h, w = x[0].size()
|
465 |
+
|
466 |
+
feat1 = x[0]
|
467 |
+
feat2 = F.interpolate(x[1], size=(h, w), mode="bilinear", align_corners=True)
|
468 |
+
feat3 = F.interpolate(x[2], size=(h, w), mode="bilinear", align_corners=True)
|
469 |
+
feat4 = F.interpolate(x[3], size=(h, w), mode="bilinear", align_corners=True)
|
470 |
+
|
471 |
+
feats = torch.cat([feat1, feat2, feat3, feat4], 1)
|
472 |
+
out_aux = self.aux_head(feats)
|
473 |
+
|
474 |
+
feats = self.conv3x3(feats)
|
475 |
+
|
476 |
+
context = self.ocr_gather_head(feats, out_aux)
|
477 |
+
feats = self.ocr_distri_head(feats, context)
|
478 |
+
|
479 |
+
out = self.cls_head(feats)
|
480 |
+
|
481 |
+
out_aux = F.interpolate(
|
482 |
+
out_aux, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
483 |
+
)
|
484 |
+
out = F.interpolate(
|
485 |
+
out, size=(x_.size(2), x_.size(3)), mode="bilinear", align_corners=True
|
486 |
+
)
|
487 |
+
return out_aux, out
|
isegm/model/modeling/hrformer_helper/__init__.py
ADDED
File without changes
|
isegm/model/modeling/hrformer_helper/backbone_selector.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
2 |
+
## Created by: Donny You, RainbowSecret
|
3 |
+
## Microsoft Research
|
4 |
+
## [email protected]
|
5 |
+
## Copyright (c) 2019
|
6 |
+
##
|
7 |
+
## This source code is licensed under the MIT-style license found in the
|
8 |
+
## LICENSE file in the root directory of this source tree
|
9 |
+
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
10 |
+
|
11 |
+
|
12 |
+
from __future__ import absolute_import
|
13 |
+
from __future__ import division
|
14 |
+
from __future__ import print_function
|
15 |
+
|
16 |
+
# from lib.models.backbones.resnet.resnet_backbone import ResNetBackbone
|
17 |
+
# from lib.models.backbones.hrnet.hrnet_backbone import HRNetBackbone
|
18 |
+
from .hrt.hrt_backbone import HRTBackbone
|
19 |
+
# from lib.models.backbones.swin.swin_backbone import SwinTransformerBackbone
|
20 |
+
from .hrt.logger import Logger as Log
|
21 |
+
|
22 |
+
|
23 |
+
class BackboneSelector(object):
|
24 |
+
def __init__(self, configer):
|
25 |
+
self.configer = configer
|
26 |
+
|
27 |
+
def get_backbone(self, **params):
|
28 |
+
backbone = self.configer.get("network", "backbone")
|
29 |
+
|
30 |
+
model = None
|
31 |
+
# if (
|
32 |
+
# "resnet" in backbone or "resnext" in backbone or "resnest" in backbone
|
33 |
+
# ) and "senet" not in backbone:
|
34 |
+
# model = ResNetBackbone(self.configer)(**params)
|
35 |
+
|
36 |
+
if "hrt" in backbone:
|
37 |
+
# model = HRTBackbone(self.configer)(**params)
|
38 |
+
pass
|
39 |
+
|
40 |
+
# elif "hrnet" in backbone:
|
41 |
+
# model = HRNetBackbone(self.configer)(**params)
|
42 |
+
|
43 |
+
# elif "swin" in backbone:
|
44 |
+
# model = SwinTransformerBackbone(self.configer)(**params)
|
45 |
+
|
46 |
+
else:
|
47 |
+
Log.error("Backbone {} is invalid.".format(backbone))
|
48 |
+
exit(1)
|
49 |
+
|
50 |
+
return model
|
51 |
+
|
52 |
+
class Test():
|
53 |
+
def __init__():
|
54 |
+
pass
|
isegm/model/modeling/hrformer_helper/hrt/__init__.py
ADDED
File without changes
|
isegm/model/modeling/hrformer_helper/hrt/hrt_backbone.py
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pdb
|
3 |
+
import argparse
|
4 |
+
import torch
|
5 |
+
import logging
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from .modules.bottleneck_block import Bottleneck, BottleneckDWP
|
10 |
+
from .modules.transformer_block import GeneralTransformerBlock
|
11 |
+
|
12 |
+
from .module_helper import ModuleHelper
|
13 |
+
from .logger import Logger as Log
|
14 |
+
|
15 |
+
blocks_dict = {
|
16 |
+
"BOTTLENECK": Bottleneck,
|
17 |
+
"TRANSFORMER_BLOCK": GeneralTransformerBlock,
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
BN_MOMENTUM = 0.1
|
22 |
+
|
23 |
+
|
24 |
+
class HighResolutionTransformerModule(nn.Module):
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
num_branches,
|
28 |
+
blocks,
|
29 |
+
num_blocks,
|
30 |
+
num_inchannels,
|
31 |
+
num_channels,
|
32 |
+
num_heads,
|
33 |
+
num_window_sizes,
|
34 |
+
num_mlp_ratios,
|
35 |
+
multi_scale_output=True,
|
36 |
+
drop_path=0.0,
|
37 |
+
):
|
38 |
+
"""Based on Local-Attention & FFN-DW-BN
|
39 |
+
num_heads: the number of head witin each MHSA
|
40 |
+
num_window_sizes: the window size for the local self-attention
|
41 |
+
num_halo_sizes: the halo size around the local window
|
42 |
+
- reference: ``Scaling Local Self-Attention for Parameter Efficient Visual Backbones''
|
43 |
+
num_sr_ratios: the spatial reduction ratios of PVT/SRA scheme.
|
44 |
+
- reference: ``Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions''
|
45 |
+
"""
|
46 |
+
super(HighResolutionTransformerModule, self).__init__()
|
47 |
+
self._check_branches(
|
48 |
+
num_branches, blocks, num_blocks, num_inchannels, num_channels
|
49 |
+
)
|
50 |
+
|
51 |
+
self.num_inchannels = num_inchannels
|
52 |
+
self.num_branches = num_branches
|
53 |
+
|
54 |
+
self.multi_scale_output = multi_scale_output
|
55 |
+
self.branches = self._make_branches(
|
56 |
+
num_branches,
|
57 |
+
blocks,
|
58 |
+
num_blocks,
|
59 |
+
num_channels,
|
60 |
+
num_heads,
|
61 |
+
num_window_sizes,
|
62 |
+
num_mlp_ratios,
|
63 |
+
drop_path,
|
64 |
+
)
|
65 |
+
self.fuse_layers = self._make_fuse_layers()
|
66 |
+
self.relu = nn.ReLU(inplace=True)
|
67 |
+
|
68 |
+
self.num_heads = num_heads
|
69 |
+
self.num_window_sizes = num_window_sizes
|
70 |
+
self.num_mlp_ratios = num_mlp_ratios
|
71 |
+
|
72 |
+
def _check_branches(
|
73 |
+
self, num_branches, blocks, num_blocks, num_inchannels, num_channels
|
74 |
+
):
|
75 |
+
if num_branches != len(num_blocks):
|
76 |
+
error_msg = "NUM_BRANCHES({}) <> NUM_BLOCKS({})".format(
|
77 |
+
num_branches, len(num_blocks)
|
78 |
+
)
|
79 |
+
Log.error(error_msg)
|
80 |
+
raise ValueError(error_msg)
|
81 |
+
|
82 |
+
if num_branches != len(num_channels):
|
83 |
+
error_msg = "NUM_BRANCHES({}) <> NUM_CHANNELS({})".format(
|
84 |
+
num_branches, len(num_channels)
|
85 |
+
)
|
86 |
+
Log.error(error_msg)
|
87 |
+
raise ValueError(error_msg)
|
88 |
+
|
89 |
+
if num_branches != len(num_inchannels):
|
90 |
+
error_msg = "NUM_BRANCHES({}) <> NUM_INCHANNELS({})".format(
|
91 |
+
num_branches, len(num_inchannels)
|
92 |
+
)
|
93 |
+
Log.error(error_msg)
|
94 |
+
raise ValueError(error_msg)
|
95 |
+
|
96 |
+
def _make_one_branch(
|
97 |
+
self,
|
98 |
+
branch_index,
|
99 |
+
block,
|
100 |
+
num_blocks,
|
101 |
+
num_channels,
|
102 |
+
num_heads,
|
103 |
+
num_window_sizes,
|
104 |
+
num_mlp_ratios,
|
105 |
+
drop_paths,
|
106 |
+
stride=1,
|
107 |
+
):
|
108 |
+
downsample = None
|
109 |
+
if (
|
110 |
+
stride != 1
|
111 |
+
or self.num_inchannels[branch_index]
|
112 |
+
!= num_channels[branch_index] * block.expansion
|
113 |
+
):
|
114 |
+
downsample = nn.Sequential(
|
115 |
+
nn.Conv2d(
|
116 |
+
self.num_inchannels[branch_index],
|
117 |
+
num_channels[branch_index] * block.expansion,
|
118 |
+
kernel_size=1,
|
119 |
+
stride=stride,
|
120 |
+
bias=False,
|
121 |
+
),
|
122 |
+
nn.SyncBatchNorm(
|
123 |
+
num_channels[branch_index] * block.expansion, momentum=BN_MOMENTUM
|
124 |
+
),
|
125 |
+
)
|
126 |
+
|
127 |
+
layers = []
|
128 |
+
layers.append(
|
129 |
+
block(
|
130 |
+
self.num_inchannels[branch_index],
|
131 |
+
num_channels[branch_index],
|
132 |
+
num_heads=num_heads[branch_index],
|
133 |
+
window_size=num_window_sizes[branch_index],
|
134 |
+
mlp_ratio=num_mlp_ratios[branch_index],
|
135 |
+
drop_path=drop_paths[0],
|
136 |
+
)
|
137 |
+
)
|
138 |
+
|
139 |
+
self.num_inchannels[branch_index] = num_channels[branch_index] * block.expansion
|
140 |
+
for i in range(1, num_blocks[branch_index]):
|
141 |
+
layers.append(
|
142 |
+
block(
|
143 |
+
self.num_inchannels[branch_index],
|
144 |
+
num_channels[branch_index],
|
145 |
+
num_heads=num_heads[branch_index],
|
146 |
+
window_size=num_window_sizes[branch_index],
|
147 |
+
mlp_ratio=num_mlp_ratios[branch_index],
|
148 |
+
drop_path=drop_paths[i],
|
149 |
+
)
|
150 |
+
)
|
151 |
+
return nn.Sequential(*layers)
|
152 |
+
|
153 |
+
def _make_branches(
|
154 |
+
self,
|
155 |
+
num_branches,
|
156 |
+
block,
|
157 |
+
num_blocks,
|
158 |
+
num_channels,
|
159 |
+
num_heads,
|
160 |
+
num_window_sizes,
|
161 |
+
num_mlp_ratios,
|
162 |
+
drop_paths,
|
163 |
+
):
|
164 |
+
branches = []
|
165 |
+
|
166 |
+
for i in range(num_branches):
|
167 |
+
branches.append(
|
168 |
+
self._make_one_branch(
|
169 |
+
i,
|
170 |
+
block,
|
171 |
+
num_blocks,
|
172 |
+
num_channels,
|
173 |
+
num_heads,
|
174 |
+
num_window_sizes,
|
175 |
+
num_mlp_ratios,
|
176 |
+
drop_paths=[_ * (2 ** i) for _ in drop_paths]
|
177 |
+
if os.environ.get("multi_res_drop_path", False)
|
178 |
+
else drop_paths,
|
179 |
+
)
|
180 |
+
)
|
181 |
+
|
182 |
+
return nn.ModuleList(branches)
|
183 |
+
|
184 |
+
def _make_fuse_layers(self):
|
185 |
+
if self.num_branches == 1:
|
186 |
+
return None
|
187 |
+
num_branches = self.num_branches
|
188 |
+
num_inchannels = self.num_inchannels
|
189 |
+
fuse_layers = []
|
190 |
+
for i in range(num_branches if self.multi_scale_output else 1):
|
191 |
+
fuse_layer = []
|
192 |
+
for j in range(num_branches):
|
193 |
+
if j > i:
|
194 |
+
fuse_layer.append(
|
195 |
+
nn.Sequential(
|
196 |
+
nn.Conv2d(
|
197 |
+
num_inchannels[j],
|
198 |
+
num_inchannels[i],
|
199 |
+
kernel_size=1,
|
200 |
+
stride=1,
|
201 |
+
bias=False,
|
202 |
+
),
|
203 |
+
nn.SyncBatchNorm(num_inchannels[i], momentum=BN_MOMENTUM),
|
204 |
+
nn.Upsample(scale_factor=2 ** (j - i), mode="nearest"),
|
205 |
+
)
|
206 |
+
)
|
207 |
+
elif j == i:
|
208 |
+
fuse_layer.append(None)
|
209 |
+
else:
|
210 |
+
conv3x3s = []
|
211 |
+
for k in range(i - j):
|
212 |
+
if k == i - j - 1:
|
213 |
+
num_outchannels_conv3x3 = num_inchannels[i]
|
214 |
+
conv3x3s.append(
|
215 |
+
nn.Sequential(
|
216 |
+
nn.Conv2d(
|
217 |
+
num_inchannels[j],
|
218 |
+
num_inchannels[j],
|
219 |
+
kernel_size=3,
|
220 |
+
stride=2,
|
221 |
+
padding=1,
|
222 |
+
groups=num_inchannels[j],
|
223 |
+
bias=False,
|
224 |
+
),
|
225 |
+
nn.SyncBatchNorm(
|
226 |
+
num_inchannels[j], momentum=BN_MOMENTUM
|
227 |
+
),
|
228 |
+
nn.Conv2d(
|
229 |
+
num_inchannels[j],
|
230 |
+
num_outchannels_conv3x3,
|
231 |
+
kernel_size=1,
|
232 |
+
stride=1,
|
233 |
+
bias=False,
|
234 |
+
),
|
235 |
+
nn.SyncBatchNorm(
|
236 |
+
num_outchannels_conv3x3, momentum=BN_MOMENTUM
|
237 |
+
),
|
238 |
+
)
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
num_outchannels_conv3x3 = num_inchannels[j]
|
242 |
+
conv3x3s.append(
|
243 |
+
nn.Sequential(
|
244 |
+
nn.Conv2d(
|
245 |
+
num_inchannels[j],
|
246 |
+
num_inchannels[j],
|
247 |
+
kernel_size=3,
|
248 |
+
stride=2,
|
249 |
+
padding=1,
|
250 |
+
groups=num_inchannels[j],
|
251 |
+
bias=False,
|
252 |
+
),
|
253 |
+
nn.SyncBatchNorm(
|
254 |
+
num_inchannels[j], momentum=BN_MOMENTUM
|
255 |
+
),
|
256 |
+
nn.Conv2d(
|
257 |
+
num_inchannels[j],
|
258 |
+
num_outchannels_conv3x3,
|
259 |
+
kernel_size=1,
|
260 |
+
stride=1,
|
261 |
+
bias=False,
|
262 |
+
),
|
263 |
+
nn.SyncBatchNorm(
|
264 |
+
num_outchannels_conv3x3, momentum=BN_MOMENTUM
|
265 |
+
),
|
266 |
+
nn.ReLU(False),
|
267 |
+
)
|
268 |
+
)
|
269 |
+
fuse_layer.append(nn.Sequential(*conv3x3s))
|
270 |
+
fuse_layers.append(nn.ModuleList(fuse_layer))
|
271 |
+
|
272 |
+
return nn.ModuleList(fuse_layers)
|
273 |
+
|
274 |
+
def get_num_inchannels(self):
|
275 |
+
return self.num_inchannels
|
276 |
+
|
277 |
+
def forward(self, x):
|
278 |
+
if self.num_branches == 1:
|
279 |
+
return [self.branches[0](x[0])]
|
280 |
+
|
281 |
+
for i in range(self.num_branches):
|
282 |
+
x[i] = self.branches[i](x[i])
|
283 |
+
|
284 |
+
x_fuse = []
|
285 |
+
for i in range(len(self.fuse_layers)):
|
286 |
+
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
|
287 |
+
for j in range(1, self.num_branches):
|
288 |
+
if i == j:
|
289 |
+
y = y + x[j]
|
290 |
+
elif j > i:
|
291 |
+
width_output = x[i].shape[-1]
|
292 |
+
height_output = x[i].shape[-2]
|
293 |
+
y = y + F.interpolate(
|
294 |
+
self.fuse_layers[i][j](x[j]),
|
295 |
+
size=[height_output, width_output],
|
296 |
+
mode="bilinear",
|
297 |
+
align_corners=True,
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
y = y + self.fuse_layers[i][j](x[j])
|
301 |
+
x_fuse.append(self.relu(y))
|
302 |
+
|
303 |
+
return x_fuse
|
304 |
+
|
305 |
+
|
306 |
+
class HighResolutionTransformer(nn.Module):
|
307 |
+
def __init__(self, cfg, in_ch=3, **kwargs):
|
308 |
+
super(HighResolutionTransformer, self).__init__()
|
309 |
+
|
310 |
+
self.conv1 = nn.Conv2d(in_ch, 64, kernel_size=3, stride=2, padding=1, bias=False)
|
311 |
+
self.bn1 = nn.SyncBatchNorm(64, momentum=BN_MOMENTUM)
|
312 |
+
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False)
|
313 |
+
self.bn2 = nn.SyncBatchNorm(64, momentum=BN_MOMENTUM)
|
314 |
+
self.relu = nn.ReLU(inplace=True)
|
315 |
+
|
316 |
+
# stochastic depth
|
317 |
+
depth_s2 = cfg["STAGE2"]["NUM_BLOCKS"][0] * cfg["STAGE2"]["NUM_MODULES"]
|
318 |
+
depth_s3 = cfg["STAGE3"]["NUM_BLOCKS"][0] * cfg["STAGE3"]["NUM_MODULES"]
|
319 |
+
depth_s4 = cfg["STAGE4"]["NUM_BLOCKS"][0] * cfg["STAGE4"]["NUM_MODULES"]
|
320 |
+
depths = [depth_s2, depth_s3, depth_s4]
|
321 |
+
drop_path_rate = cfg["DROP_PATH_RATE"]
|
322 |
+
if os.environ.get("drop_path_rate") is not None:
|
323 |
+
drop_path_rate = float(os.environ.get("drop_path_rate"))
|
324 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
325 |
+
|
326 |
+
self.stage1_cfg = cfg["STAGE1"]
|
327 |
+
num_channels = self.stage1_cfg["NUM_CHANNELS"][0]
|
328 |
+
block = blocks_dict[self.stage1_cfg["BLOCK"]]
|
329 |
+
num_blocks = self.stage1_cfg["NUM_BLOCKS"][0]
|
330 |
+
self.layer1 = self._make_layer(block, 64, num_channels, num_blocks)
|
331 |
+
stage1_out_channel = block.expansion * num_channels
|
332 |
+
|
333 |
+
self.stage2_cfg = cfg["STAGE2"]
|
334 |
+
num_channels = self.stage2_cfg["NUM_CHANNELS"]
|
335 |
+
block = blocks_dict[self.stage2_cfg["BLOCK"]]
|
336 |
+
num_channels = [
|
337 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))
|
338 |
+
]
|
339 |
+
self.transition1 = self._make_transition_layer(
|
340 |
+
[stage1_out_channel], num_channels
|
341 |
+
)
|
342 |
+
self.stage2, pre_stage_channels = self._make_stage(
|
343 |
+
self.stage2_cfg, num_channels, drop_path=dpr[0:depth_s2]
|
344 |
+
)
|
345 |
+
|
346 |
+
self.stage3_cfg = cfg["STAGE3"]
|
347 |
+
num_channels = self.stage3_cfg["NUM_CHANNELS"]
|
348 |
+
block = blocks_dict[self.stage3_cfg["BLOCK"]]
|
349 |
+
num_channels = [
|
350 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))
|
351 |
+
]
|
352 |
+
self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels)
|
353 |
+
self.stage3, pre_stage_channels = self._make_stage(
|
354 |
+
self.stage3_cfg, num_channels, drop_path=dpr[depth_s2 : depth_s2 + depth_s3]
|
355 |
+
)
|
356 |
+
|
357 |
+
self.stage4_cfg = cfg["STAGE4"]
|
358 |
+
num_channels = self.stage4_cfg["NUM_CHANNELS"]
|
359 |
+
block = blocks_dict[self.stage4_cfg["BLOCK"]]
|
360 |
+
num_channels = [
|
361 |
+
num_channels[i] * block.expansion for i in range(len(num_channels))
|
362 |
+
]
|
363 |
+
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels)
|
364 |
+
self.stage4, pre_stage_channels = self._make_stage(
|
365 |
+
self.stage4_cfg,
|
366 |
+
num_channels,
|
367 |
+
multi_scale_output=True,
|
368 |
+
drop_path=dpr[depth_s2 + depth_s3 :],
|
369 |
+
)
|
370 |
+
|
371 |
+
if os.environ.get("keep_imagenet_head"):
|
372 |
+
(
|
373 |
+
self.incre_modules,
|
374 |
+
self.downsamp_modules,
|
375 |
+
self.final_layer,
|
376 |
+
) = self._make_head(pre_stage_channels)
|
377 |
+
|
378 |
+
def _make_head(self, pre_stage_channels):
|
379 |
+
head_block = BottleneckDWP
|
380 |
+
head_channels = [32, 64, 128, 256]
|
381 |
+
|
382 |
+
# Increasing the #channels on each resolution
|
383 |
+
# from C, 2C, 4C, 8C to 128, 256, 512, 1024
|
384 |
+
incre_modules = []
|
385 |
+
for i, channels in enumerate(pre_stage_channels):
|
386 |
+
incre_module = self._make_layer(
|
387 |
+
head_block, channels, head_channels[i], 1, stride=1
|
388 |
+
)
|
389 |
+
incre_modules.append(incre_module)
|
390 |
+
incre_modules = nn.ModuleList(incre_modules)
|
391 |
+
|
392 |
+
# downsampling modules
|
393 |
+
downsamp_modules = []
|
394 |
+
for i in range(len(pre_stage_channels) - 1):
|
395 |
+
in_channels = head_channels[i] * head_block.expansion
|
396 |
+
out_channels = head_channels[i + 1] * head_block.expansion
|
397 |
+
downsamp_module = nn.Sequential(
|
398 |
+
nn.Conv2d(
|
399 |
+
in_channels,
|
400 |
+
in_channels,
|
401 |
+
kernel_size=3,
|
402 |
+
stride=2,
|
403 |
+
padding=1,
|
404 |
+
groups=in_channels,
|
405 |
+
),
|
406 |
+
nn.SyncBatchNorm(in_channels, momentum=BN_MOMENTUM),
|
407 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1),
|
408 |
+
nn.SyncBatchNorm(out_channels, momentum=BN_MOMENTUM),
|
409 |
+
nn.ReLU(inplace=True),
|
410 |
+
)
|
411 |
+
downsamp_modules.append(downsamp_module)
|
412 |
+
downsamp_modules = nn.ModuleList(downsamp_modules)
|
413 |
+
|
414 |
+
final_layer = nn.Sequential(
|
415 |
+
nn.Conv2d(
|
416 |
+
in_channels=head_channels[3] * head_block.expansion,
|
417 |
+
out_channels=2048,
|
418 |
+
kernel_size=1,
|
419 |
+
stride=1,
|
420 |
+
padding=0,
|
421 |
+
),
|
422 |
+
nn.SyncBatchNorm(2048, momentum=BN_MOMENTUM),
|
423 |
+
nn.ReLU(inplace=True),
|
424 |
+
)
|
425 |
+
|
426 |
+
return incre_modules, downsamp_modules, final_layer
|
427 |
+
|
428 |
+
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer):
|
429 |
+
num_branches_cur = len(num_channels_cur_layer)
|
430 |
+
num_branches_pre = len(num_channels_pre_layer)
|
431 |
+
|
432 |
+
transition_layers = []
|
433 |
+
for i in range(num_branches_cur):
|
434 |
+
if i < num_branches_pre:
|
435 |
+
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
|
436 |
+
transition_layers.append(
|
437 |
+
nn.Sequential(
|
438 |
+
nn.Conv2d(
|
439 |
+
num_channels_pre_layer[i],
|
440 |
+
num_channels_cur_layer[i],
|
441 |
+
3,
|
442 |
+
1,
|
443 |
+
1,
|
444 |
+
bias=False,
|
445 |
+
),
|
446 |
+
nn.SyncBatchNorm(
|
447 |
+
num_channels_cur_layer[i], momentum=BN_MOMENTUM
|
448 |
+
),
|
449 |
+
nn.ReLU(inplace=True),
|
450 |
+
)
|
451 |
+
)
|
452 |
+
else:
|
453 |
+
transition_layers.append(None)
|
454 |
+
else:
|
455 |
+
conv3x3s = []
|
456 |
+
for j in range(i + 1 - num_branches_pre):
|
457 |
+
inchannels = num_channels_pre_layer[-1]
|
458 |
+
outchannels = (
|
459 |
+
num_channels_cur_layer[i]
|
460 |
+
if j == i - num_branches_pre
|
461 |
+
else inchannels
|
462 |
+
)
|
463 |
+
conv3x3s.append(
|
464 |
+
nn.Sequential(
|
465 |
+
nn.Conv2d(inchannels, outchannels, 3, 2, 1, bias=False),
|
466 |
+
nn.SyncBatchNorm(outchannels, momentum=BN_MOMENTUM),
|
467 |
+
nn.ReLU(inplace=True),
|
468 |
+
)
|
469 |
+
)
|
470 |
+
transition_layers.append(nn.Sequential(*conv3x3s))
|
471 |
+
|
472 |
+
return nn.ModuleList(transition_layers)
|
473 |
+
|
474 |
+
def _make_layer(
|
475 |
+
self,
|
476 |
+
block,
|
477 |
+
inplanes,
|
478 |
+
planes,
|
479 |
+
blocks,
|
480 |
+
num_heads=1,
|
481 |
+
stride=1,
|
482 |
+
window_size=7,
|
483 |
+
mlp_ratio=4.0,
|
484 |
+
):
|
485 |
+
downsample = None
|
486 |
+
if stride != 1 or inplanes != planes * block.expansion:
|
487 |
+
downsample = nn.Sequential(
|
488 |
+
nn.Conv2d(
|
489 |
+
inplanes,
|
490 |
+
planes * block.expansion,
|
491 |
+
kernel_size=1,
|
492 |
+
stride=stride,
|
493 |
+
bias=False,
|
494 |
+
),
|
495 |
+
nn.SyncBatchNorm(planes * block.expansion, momentum=BN_MOMENTUM),
|
496 |
+
)
|
497 |
+
layers = []
|
498 |
+
|
499 |
+
if isinstance(block, GeneralTransformerBlock):
|
500 |
+
layers.append(
|
501 |
+
block(
|
502 |
+
inplanes,
|
503 |
+
planes,
|
504 |
+
num_heads,
|
505 |
+
window_size,
|
506 |
+
mlp_ratio,
|
507 |
+
)
|
508 |
+
)
|
509 |
+
else:
|
510 |
+
layers.append(block(inplanes, planes, stride, downsample))
|
511 |
+
|
512 |
+
inplanes = planes * block.expansion
|
513 |
+
for i in range(1, blocks):
|
514 |
+
layers.append(block(inplanes, planes))
|
515 |
+
|
516 |
+
return nn.Sequential(*layers)
|
517 |
+
|
518 |
+
def _make_stage(
|
519 |
+
self, layer_config, num_inchannels, multi_scale_output=True, drop_path=0.0
|
520 |
+
):
|
521 |
+
num_modules = layer_config["NUM_MODULES"]
|
522 |
+
num_branches = layer_config["NUM_BRANCHES"]
|
523 |
+
num_blocks = layer_config["NUM_BLOCKS"]
|
524 |
+
num_channels = layer_config["NUM_CHANNELS"]
|
525 |
+
block = blocks_dict[layer_config["BLOCK"]]
|
526 |
+
num_heads = layer_config["NUM_HEADS"]
|
527 |
+
num_window_sizes = layer_config["NUM_WINDOW_SIZES"]
|
528 |
+
num_mlp_ratios = layer_config["NUM_MLP_RATIOS"]
|
529 |
+
|
530 |
+
modules = []
|
531 |
+
for i in range(num_modules):
|
532 |
+
# multi_scale_output is only used last module
|
533 |
+
if not multi_scale_output and i == num_modules - 1:
|
534 |
+
reset_multi_scale_output = False
|
535 |
+
else:
|
536 |
+
reset_multi_scale_output = True
|
537 |
+
|
538 |
+
modules.append(
|
539 |
+
HighResolutionTransformerModule(
|
540 |
+
num_branches,
|
541 |
+
block,
|
542 |
+
num_blocks,
|
543 |
+
num_inchannels,
|
544 |
+
num_channels,
|
545 |
+
num_heads,
|
546 |
+
num_window_sizes,
|
547 |
+
num_mlp_ratios,
|
548 |
+
reset_multi_scale_output,
|
549 |
+
drop_path=drop_path[num_blocks[0] * i : num_blocks[0] * (i + 1)],
|
550 |
+
)
|
551 |
+
)
|
552 |
+
num_inchannels = modules[-1].get_num_inchannels()
|
553 |
+
|
554 |
+
return nn.Sequential(*modules), num_inchannels
|
555 |
+
|
556 |
+
def forward(self, x):
|
557 |
+
x = self.conv1(x)
|
558 |
+
x = self.bn1(x)
|
559 |
+
x = self.relu(x)
|
560 |
+
x = self.conv2(x)
|
561 |
+
x = self.bn2(x)
|
562 |
+
x = self.relu(x)
|
563 |
+
x = self.layer1(x)
|
564 |
+
|
565 |
+
x_list = []
|
566 |
+
for i in range(self.stage2_cfg["NUM_BRANCHES"]):
|
567 |
+
if self.transition1[i] is not None:
|
568 |
+
x_list.append(self.transition1[i](x))
|
569 |
+
else:
|
570 |
+
x_list.append(x)
|
571 |
+
y_list = self.stage2(x_list)
|
572 |
+
|
573 |
+
x_list = []
|
574 |
+
for i in range(self.stage3_cfg["NUM_BRANCHES"]):
|
575 |
+
if self.transition2[i] is not None:
|
576 |
+
x_list.append(self.transition2[i](y_list[-1]))
|
577 |
+
else:
|
578 |
+
x_list.append(y_list[i])
|
579 |
+
y_list = self.stage3(x_list)
|
580 |
+
|
581 |
+
x_list = []
|
582 |
+
for i in range(self.stage4_cfg["NUM_BRANCHES"]):
|
583 |
+
if self.transition3[i] is not None:
|
584 |
+
x_list.append(self.transition3[i](y_list[-1]))
|
585 |
+
else:
|
586 |
+
x_list.append(y_list[i])
|
587 |
+
y_list = self.stage4(x_list)
|
588 |
+
|
589 |
+
if os.environ.get("keep_imagenet_head"):
|
590 |
+
x_list = []
|
591 |
+
y = self.incre_modules[0](y_list[0])
|
592 |
+
x_list.append(y)
|
593 |
+
for i in range(len(self.downsamp_modules)):
|
594 |
+
y = self.incre_modules[i + 1](y_list[i + 1]) + self.downsamp_modules[i](
|
595 |
+
y
|
596 |
+
)
|
597 |
+
x_list.append(y)
|
598 |
+
|
599 |
+
y = self.final_layer(y)
|
600 |
+
del x_list[-1]
|
601 |
+
x_list.append(y)
|
602 |
+
return x_list
|
603 |
+
|
604 |
+
else:
|
605 |
+
return y_list
|
606 |
+
|
607 |
+
|
608 |
+
class HRTBackbone(object):
|
609 |
+
def __init__(self, configer):
|
610 |
+
self.configer = configer
|
611 |
+
|
612 |
+
def __call__(self):
|
613 |
+
arch = self.configer.get("network", "backbone")
|
614 |
+
from .hrt_config import MODEL_CONFIGS
|
615 |
+
|
616 |
+
if arch in [
|
617 |
+
"hrt_small",
|
618 |
+
"hrt_base",
|
619 |
+
"hrt_base_win13",
|
620 |
+
"hrt_base_win15",
|
621 |
+
]:
|
622 |
+
arch_net = HighResolutionTransformer(MODEL_CONFIGS[arch])
|
623 |
+
arch_net = ModuleHelper.load_model(
|
624 |
+
arch_net,
|
625 |
+
pretrained=self.configer.get("network", "pretrained"),
|
626 |
+
all_match=False,
|
627 |
+
network="hrt_window" if "win" in arch else "hrt",
|
628 |
+
)
|
629 |
+
|
630 |
+
else:
|
631 |
+
raise Exception("Architecture undefined!")
|
632 |
+
|
633 |
+
return arch_net
|
634 |
+
|
635 |
+
|
636 |
+
class HRTBackbone_v2(object):
|
637 |
+
def __init__(self, backbone='hrt_small', pretrained=None, in_ch=3):
|
638 |
+
self.backbone = backbone
|
639 |
+
self.pretrained = pretrained
|
640 |
+
self.in_ch = in_ch
|
641 |
+
|
642 |
+
def __call__(self):
|
643 |
+
from .hrt_config import MODEL_CONFIGS
|
644 |
+
if self.backbone in [
|
645 |
+
"hrt_small",
|
646 |
+
"hrt_base",
|
647 |
+
"hrt_base_win13",
|
648 |
+
"hrt_base_win15",
|
649 |
+
]:
|
650 |
+
arch_net = HighResolutionTransformer(MODEL_CONFIGS[self.backbone], in_ch=self.in_ch)
|
651 |
+
arch_net = ModuleHelper.load_model(
|
652 |
+
arch_net,
|
653 |
+
pretrained=self.pretrained,
|
654 |
+
all_match=False,
|
655 |
+
network="hrt_window" if "win" in self.backbone else "hrt",
|
656 |
+
)
|
657 |
+
|
658 |
+
else:
|
659 |
+
raise Exception("ARCHITECTURE UNDEFINED!")
|
660 |
+
|
661 |
+
return arch_net
|
isegm/model/modeling/hrformer_helper/hrt/hrt_config.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------------
|
2 |
+
# Copyright (c) Microsoft
|
3 |
+
# Licensed under the MIT License.
|
4 |
+
# Rainbowsecret ([email protected])
|
5 |
+
# ------------------------------------------------------------------------------
|
6 |
+
|
7 |
+
from __future__ import absolute_import
|
8 |
+
from __future__ import division
|
9 |
+
from __future__ import print_function
|
10 |
+
|
11 |
+
from yacs.config import CfgNode as CN
|
12 |
+
|
13 |
+
# configs for HRT_SMALL
|
14 |
+
HRT_SMALL = CN()
|
15 |
+
HRT_SMALL.DROP_PATH_RATE = 0.2
|
16 |
+
|
17 |
+
HRT_SMALL.STAGE1 = CN()
|
18 |
+
HRT_SMALL.STAGE1.NUM_MODULES = 1
|
19 |
+
HRT_SMALL.STAGE1.NUM_BRANCHES = 1
|
20 |
+
HRT_SMALL.STAGE1.NUM_BLOCKS = [2]
|
21 |
+
HRT_SMALL.STAGE1.NUM_CHANNELS = [64]
|
22 |
+
HRT_SMALL.STAGE1.NUM_HEADS = [2]
|
23 |
+
HRT_SMALL.STAGE1.NUM_MLP_RATIOS = [4]
|
24 |
+
HRT_SMALL.STAGE1.NUM_RESOLUTIONS = [[56, 56]]
|
25 |
+
HRT_SMALL.STAGE1.BLOCK = "BOTTLENECK"
|
26 |
+
|
27 |
+
HRT_SMALL.STAGE2 = CN()
|
28 |
+
HRT_SMALL.STAGE2.NUM_MODULES = 1
|
29 |
+
HRT_SMALL.STAGE2.NUM_BRANCHES = 2
|
30 |
+
HRT_SMALL.STAGE2.NUM_BLOCKS = [2, 2]
|
31 |
+
HRT_SMALL.STAGE2.NUM_CHANNELS = [32, 64]
|
32 |
+
HRT_SMALL.STAGE2.NUM_HEADS = [1, 2]
|
33 |
+
HRT_SMALL.STAGE2.NUM_MLP_RATIOS = [4, 4]
|
34 |
+
HRT_SMALL.STAGE2.NUM_RESOLUTIONS = [[56, 56], [28, 28]]
|
35 |
+
HRT_SMALL.STAGE2.NUM_WINDOW_SIZES = [7, 7]
|
36 |
+
HRT_SMALL.STAGE2.BLOCK = "TRANSFORMER_BLOCK"
|
37 |
+
|
38 |
+
HRT_SMALL.STAGE3 = CN()
|
39 |
+
HRT_SMALL.STAGE3.NUM_MODULES = 4
|
40 |
+
HRT_SMALL.STAGE3.NUM_BRANCHES = 3
|
41 |
+
HRT_SMALL.STAGE3.NUM_BLOCKS = [2, 2, 2]
|
42 |
+
HRT_SMALL.STAGE3.NUM_CHANNELS = [32, 64, 128]
|
43 |
+
HRT_SMALL.STAGE3.NUM_HEADS = [1, 2, 4]
|
44 |
+
HRT_SMALL.STAGE3.NUM_MLP_RATIOS = [4, 4, 4]
|
45 |
+
HRT_SMALL.STAGE3.NUM_RESOLUTIONS = [[56, 56], [28, 28], [14, 14]]
|
46 |
+
HRT_SMALL.STAGE3.NUM_WINDOW_SIZES = [7, 7, 7]
|
47 |
+
HRT_SMALL.STAGE3.BLOCK = "TRANSFORMER_BLOCK"
|
48 |
+
|
49 |
+
HRT_SMALL.STAGE4 = CN()
|
50 |
+
HRT_SMALL.STAGE4.NUM_MODULES = 2
|
51 |
+
HRT_SMALL.STAGE4.NUM_BRANCHES = 4
|
52 |
+
HRT_SMALL.STAGE4.NUM_BLOCKS = [2, 2, 2, 2]
|
53 |
+
HRT_SMALL.STAGE4.NUM_CHANNELS = [32, 64, 128, 256]
|
54 |
+
HRT_SMALL.STAGE4.NUM_HEADS = [1, 2, 4, 8]
|
55 |
+
HRT_SMALL.STAGE4.NUM_MLP_RATIOS = [4, 4, 4, 4]
|
56 |
+
HRT_SMALL.STAGE4.NUM_RESOLUTIONS = [[56, 56], [28, 28], [14, 14], [7, 7]]
|
57 |
+
HRT_SMALL.STAGE4.NUM_WINDOW_SIZES = [7, 7, 7, 7]
|
58 |
+
HRT_SMALL.STAGE4.BLOCK = "TRANSFORMER_BLOCK"
|
59 |
+
|
60 |
+
# configs for HRT_BASE
|
61 |
+
HRT_BASE = CN()
|
62 |
+
HRT_BASE.DROP_PATH_RATE = 0.2
|
63 |
+
|
64 |
+
HRT_BASE.STAGE1 = CN()
|
65 |
+
HRT_BASE.STAGE1.NUM_MODULES = 1
|
66 |
+
HRT_BASE.STAGE1.NUM_BRANCHES = 1
|
67 |
+
HRT_BASE.STAGE1.NUM_BLOCKS = [2]
|
68 |
+
HRT_BASE.STAGE1.NUM_CHANNELS = [64]
|
69 |
+
HRT_BASE.STAGE1.NUM_HEADS = [2]
|
70 |
+
HRT_BASE.STAGE1.NUM_MLP_RATIOS = [4]
|
71 |
+
HRT_BASE.STAGE1.NUM_RESOLUTIONS = [[56, 56]]
|
72 |
+
HRT_BASE.STAGE1.BLOCK = "BOTTLENECK"
|
73 |
+
|
74 |
+
HRT_BASE.STAGE2 = CN()
|
75 |
+
HRT_BASE.STAGE2.NUM_MODULES = 1
|
76 |
+
HRT_BASE.STAGE2.NUM_BRANCHES = 2
|
77 |
+
HRT_BASE.STAGE2.NUM_BLOCKS = [2, 2]
|
78 |
+
HRT_BASE.STAGE2.NUM_CHANNELS = [78, 156]
|
79 |
+
HRT_BASE.STAGE2.NUM_HEADS = [2, 4]
|
80 |
+
HRT_BASE.STAGE2.NUM_MLP_RATIOS = [4, 4]
|
81 |
+
HRT_BASE.STAGE2.NUM_RESOLUTIONS = [[56, 56], [28, 28]]
|
82 |
+
HRT_BASE.STAGE2.NUM_WINDOW_SIZES = [7, 7]
|
83 |
+
HRT_BASE.STAGE2.BLOCK = "TRANSFORMER_BLOCK"
|
84 |
+
|
85 |
+
HRT_BASE.STAGE3 = CN()
|
86 |
+
HRT_BASE.STAGE3.NUM_MODULES = 4
|
87 |
+
HRT_BASE.STAGE3.NUM_BRANCHES = 3
|
88 |
+
HRT_BASE.STAGE3.NUM_BLOCKS = [2, 2, 2]
|
89 |
+
HRT_BASE.STAGE3.NUM_CHANNELS = [78, 156, 312]
|
90 |
+
HRT_BASE.STAGE3.NUM_HEADS = [2, 4, 8]
|
91 |
+
HRT_BASE.STAGE3.NUM_MLP_RATIOS = [4, 4, 4]
|
92 |
+
HRT_BASE.STAGE3.NUM_RESOLUTIONS = [[56, 56], [28, 28], [14, 14]]
|
93 |
+
HRT_BASE.STAGE3.NUM_WINDOW_SIZES = [7, 7, 7]
|
94 |
+
HRT_BASE.STAGE3.BLOCK = "TRANSFORMER_BLOCK"
|
95 |
+
|
96 |
+
HRT_BASE.STAGE4 = CN()
|
97 |
+
HRT_BASE.STAGE4.NUM_MODULES = 2
|
98 |
+
HRT_BASE.STAGE4.NUM_BRANCHES = 4
|
99 |
+
HRT_BASE.STAGE4.NUM_BLOCKS = [2, 2, 2, 2]
|
100 |
+
HRT_BASE.STAGE4.NUM_CHANNELS = [78, 156, 312, 624]
|
101 |
+
HRT_BASE.STAGE4.NUM_HEADS = [2, 4, 8, 16]
|
102 |
+
HRT_BASE.STAGE4.NUM_MLP_RATIOS = [4, 4, 4, 4]
|
103 |
+
HRT_BASE.STAGE4.NUM_RESOLUTIONS = [[56, 56], [28, 28], [14, 14], [7, 7]]
|
104 |
+
HRT_BASE.STAGE4.NUM_WINDOW_SIZES = [7, 7, 7, 7]
|
105 |
+
HRT_BASE.STAGE4.BLOCK = "TRANSFORMER_BLOCK"
|
106 |
+
|
107 |
+
HRT_BASE_WIN_13 = HRT_BASE.clone()
|
108 |
+
HRT_BASE_WIN_13.STAGE2.NUM_WINDOW_SIZES = [13, 13]
|
109 |
+
HRT_BASE_WIN_13.STAGE3.NUM_WINDOW_SIZES = [13, 13, 13]
|
110 |
+
HRT_BASE_WIN_13.STAGE4.NUM_WINDOW_SIZES = [13, 13, 13, 13]
|
111 |
+
|
112 |
+
|
113 |
+
HRT_BASE_WIN_15 = HRT_BASE.clone()
|
114 |
+
HRT_BASE_WIN_15.STAGE2.NUM_WINDOW_SIZES = [15, 15]
|
115 |
+
HRT_BASE_WIN_15.STAGE3.NUM_WINDOW_SIZES = [15, 15, 15]
|
116 |
+
HRT_BASE_WIN_15.STAGE4.NUM_WINDOW_SIZES = [15, 15, 15, 15]
|
117 |
+
|
118 |
+
MODEL_CONFIGS = {
|
119 |
+
"hrt_small": HRT_SMALL,
|
120 |
+
"hrt_base": HRT_BASE,
|
121 |
+
"hrt_base_win13": HRT_BASE_WIN_13,
|
122 |
+
"hrt_base_win15": HRT_BASE_WIN_15,
|
123 |
+
}
|
isegm/model/modeling/hrformer_helper/hrt/logger.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
# Author: Donny You([email protected])
|
4 |
+
# Logging tool implemented with the python Package logging.
|
5 |
+
|
6 |
+
|
7 |
+
from __future__ import absolute_import
|
8 |
+
from __future__ import division
|
9 |
+
from __future__ import print_function
|
10 |
+
|
11 |
+
import argparse
|
12 |
+
import logging
|
13 |
+
import os
|
14 |
+
import sys
|
15 |
+
|
16 |
+
|
17 |
+
DEFAULT_LOGFILE_LEVEL = 'debug'
|
18 |
+
DEFAULT_STDOUT_LEVEL = 'info'
|
19 |
+
DEFAULT_LOG_FILE = './default.log'
|
20 |
+
DEFAULT_LOG_FORMAT = '%(asctime)s %(levelname)-7s %(message)s'
|
21 |
+
|
22 |
+
LOG_LEVEL_DICT = {
|
23 |
+
'debug': logging.DEBUG,
|
24 |
+
'info': logging.INFO,
|
25 |
+
'warning': logging.WARNING,
|
26 |
+
'error': logging.ERROR,
|
27 |
+
'critical': logging.CRITICAL
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class Logger(object):
|
32 |
+
"""
|
33 |
+
Args:
|
34 |
+
Log level: CRITICAL>ERROR>WARNING>INFO>DEBUG.
|
35 |
+
Log file: The file that stores the logging info.
|
36 |
+
rewrite: Clear the log file.
|
37 |
+
log format: The format of log messages.
|
38 |
+
stdout level: The log level to print on the screen.
|
39 |
+
"""
|
40 |
+
logfile_level = None
|
41 |
+
log_file = None
|
42 |
+
log_format = None
|
43 |
+
rewrite = None
|
44 |
+
stdout_level = None
|
45 |
+
logger = None
|
46 |
+
|
47 |
+
_caches = {}
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def init(logfile_level=DEFAULT_LOGFILE_LEVEL,
|
51 |
+
log_file=DEFAULT_LOG_FILE,
|
52 |
+
log_format=DEFAULT_LOG_FORMAT,
|
53 |
+
rewrite=False,
|
54 |
+
stdout_level=None):
|
55 |
+
Logger.logfile_level = logfile_level
|
56 |
+
Logger.log_file = log_file
|
57 |
+
Logger.log_format = log_format
|
58 |
+
Logger.rewrite = rewrite
|
59 |
+
Logger.stdout_level = stdout_level
|
60 |
+
|
61 |
+
Logger.logger = logging.getLogger()
|
62 |
+
Logger.logger.handlers = []
|
63 |
+
fmt = logging.Formatter(Logger.log_format)
|
64 |
+
|
65 |
+
if Logger.logfile_level is not None:
|
66 |
+
filemode = 'w'
|
67 |
+
if not Logger.rewrite:
|
68 |
+
filemode = 'a'
|
69 |
+
|
70 |
+
dir_name = os.path.dirname(os.path.abspath(Logger.log_file))
|
71 |
+
if not os.path.exists(dir_name):
|
72 |
+
os.makedirs(dir_name)
|
73 |
+
|
74 |
+
if Logger.logfile_level not in LOG_LEVEL_DICT:
|
75 |
+
print('Invalid logging level: {}'.format(Logger.logfile_level))
|
76 |
+
Logger.logfile_level = DEFAULT_LOGFILE_LEVEL
|
77 |
+
|
78 |
+
Logger.logger.setLevel(LOG_LEVEL_DICT[Logger.logfile_level])
|
79 |
+
|
80 |
+
fh = logging.FileHandler(Logger.log_file, mode=filemode)
|
81 |
+
fh.setFormatter(fmt)
|
82 |
+
fh.setLevel(LOG_LEVEL_DICT[Logger.logfile_level])
|
83 |
+
|
84 |
+
Logger.logger.addHandler(fh)
|
85 |
+
|
86 |
+
if stdout_level is not None:
|
87 |
+
if Logger.logfile_level is None:
|
88 |
+
Logger.logger.setLevel(LOG_LEVEL_DICT[Logger.stdout_level])
|
89 |
+
|
90 |
+
console = logging.StreamHandler()
|
91 |
+
if Logger.stdout_level not in LOG_LEVEL_DICT:
|
92 |
+
print('Invalid logging level: {}'.format(Logger.stdout_level))
|
93 |
+
return
|
94 |
+
|
95 |
+
console.setLevel(LOG_LEVEL_DICT[Logger.stdout_level])
|
96 |
+
console.setFormatter(fmt)
|
97 |
+
Logger.logger.addHandler(console)
|
98 |
+
|
99 |
+
@staticmethod
|
100 |
+
def set_log_file(file_path):
|
101 |
+
Logger.log_file = file_path
|
102 |
+
Logger.init(log_file=file_path)
|
103 |
+
|
104 |
+
@staticmethod
|
105 |
+
def set_logfile_level(log_level):
|
106 |
+
if log_level not in LOG_LEVEL_DICT:
|
107 |
+
print('Invalid logging level: {}'.format(log_level))
|
108 |
+
return
|
109 |
+
|
110 |
+
Logger.init(logfile_level=log_level)
|
111 |
+
|
112 |
+
@staticmethod
|
113 |
+
def clear_log_file():
|
114 |
+
Logger.rewrite = True
|
115 |
+
Logger.init(rewrite=True)
|
116 |
+
|
117 |
+
@staticmethod
|
118 |
+
def check_logger():
|
119 |
+
if Logger.logger is None:
|
120 |
+
Logger.init(logfile_level=None, stdout_level=DEFAULT_STDOUT_LEVEL)
|
121 |
+
|
122 |
+
@staticmethod
|
123 |
+
def set_stdout_level(log_level):
|
124 |
+
if log_level not in LOG_LEVEL_DICT:
|
125 |
+
print('Invalid logging level: {}'.format(log_level))
|
126 |
+
return
|
127 |
+
|
128 |
+
Logger.init(stdout_level=log_level)
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def debug(message):
|
132 |
+
Logger.check_logger()
|
133 |
+
filename = os.path.basename(sys._getframe().f_back.f_code.co_filename)
|
134 |
+
lineno = sys._getframe().f_back.f_lineno
|
135 |
+
prefix = '[{}, {}]'.format(filename,lineno)
|
136 |
+
Logger.logger.debug('{} {}'.format(prefix, message))
|
137 |
+
|
138 |
+
@staticmethod
|
139 |
+
def info(message):
|
140 |
+
Logger.check_logger()
|
141 |
+
filename = os.path.basename(sys._getframe().f_back.f_code.co_filename)
|
142 |
+
lineno = sys._getframe().f_back.f_lineno
|
143 |
+
prefix = '[{}, {}]'.format(filename,lineno)
|
144 |
+
Logger.logger.info('{} {}'.format(prefix, message))
|
145 |
+
|
146 |
+
@staticmethod
|
147 |
+
def info_once(message):
|
148 |
+
Logger.check_logger()
|
149 |
+
filename = os.path.basename(sys._getframe().f_back.f_code.co_filename)
|
150 |
+
lineno = sys._getframe().f_back.f_lineno
|
151 |
+
prefix = '[{}, {}]'.format(filename, lineno)
|
152 |
+
|
153 |
+
if Logger._caches.get((prefix, message)) is not None:
|
154 |
+
return
|
155 |
+
|
156 |
+
Logger.logger.info('{} {}'.format(prefix, message))
|
157 |
+
Logger._caches[(prefix, message)] = True
|
158 |
+
|
159 |
+
@staticmethod
|
160 |
+
def warn(message):
|
161 |
+
Logger.check_logger()
|
162 |
+
filename = os.path.basename(sys._getframe().f_back.f_code.co_filename)
|
163 |
+
lineno = sys._getframe().f_back.f_lineno
|
164 |
+
prefix = '[{}, {}]'.format(filename,lineno)
|
165 |
+
Logger.logger.warn('{} {}'.format(prefix, message))
|
166 |
+
|
167 |
+
@staticmethod
|
168 |
+
def error(message):
|
169 |
+
Logger.check_logger()
|
170 |
+
filename = os.path.basename(sys._getframe().f_back.f_code.co_filename)
|
171 |
+
lineno = sys._getframe().f_back.f_lineno
|
172 |
+
prefix = '[{}, {}]'.format(filename,lineno)
|
173 |
+
Logger.logger.error('{} {}'.format(prefix, message))
|
174 |
+
|
175 |
+
@staticmethod
|
176 |
+
def critical(message):
|
177 |
+
Logger.check_logger()
|
178 |
+
filename = os.path.basename(sys._getframe().f_back.f_code.co_filename)
|
179 |
+
lineno = sys._getframe().f_back.f_lineno
|
180 |
+
prefix = '[{}, {}]'.format(filename,lineno)
|
181 |
+
Logger.logger.critical('{} {}'.format(prefix, message))
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
parser = argparse.ArgumentParser()
|
186 |
+
parser.add_argument('--logfile_level', default="debug", type=str,
|
187 |
+
dest='logfile_level', help='To set the log level to files.')
|
188 |
+
parser.add_argument('--stdout_level', default=None, type=str,
|
189 |
+
dest='stdout_level', help='To set the level to print to screen.')
|
190 |
+
parser.add_argument('--log_file', default="./default.log", type=str,
|
191 |
+
dest='log_file', help='The path of log files.')
|
192 |
+
parser.add_argument('--log_format', default="%(asctime)s %(levelname)-7s %(message)s",
|
193 |
+
type=str, dest='log_format', help='The format of log messages.')
|
194 |
+
parser.add_argument('--rewrite', default=False, type=bool,
|
195 |
+
dest='rewrite', help='Clear the log files existed.')
|
196 |
+
|
197 |
+
args = parser.parse_args()
|
198 |
+
Logger.init(logfile_level=args.logfile_level, stdout_level=args.stdout_level,
|
199 |
+
log_file=args.log_file, log_format=args.log_format, rewrite=args.rewrite)
|
200 |
+
|
201 |
+
Logger.info("info test.")
|
202 |
+
Logger.debug("debug test.")
|
203 |
+
Logger.warn("warn test.")
|
204 |
+
Logger.error("error test.")
|
205 |
+
Logger.debug("debug test.")
|
isegm/model/modeling/hrformer_helper/hrt/module_helper.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
# Author: Donny You ([email protected])
|
4 |
+
|
5 |
+
|
6 |
+
from __future__ import absolute_import
|
7 |
+
from __future__ import division
|
8 |
+
from __future__ import print_function
|
9 |
+
|
10 |
+
import functools
|
11 |
+
import os
|
12 |
+
import pdb
|
13 |
+
import math
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
|
18 |
+
try:
|
19 |
+
from urllib import urlretrieve
|
20 |
+
except ImportError:
|
21 |
+
from urllib.request import urlretrieve
|
22 |
+
|
23 |
+
from .logger import Logger as Log
|
24 |
+
|
25 |
+
|
26 |
+
class ModuleHelper(object):
|
27 |
+
@staticmethod
|
28 |
+
def BNReLU(num_features, bn_type=None, **kwargs):
|
29 |
+
if bn_type == "torchbn":
|
30 |
+
return nn.Sequential(nn.BatchNorm2d(num_features, **kwargs), nn.ReLU())
|
31 |
+
elif bn_type == "torchsyncbn":
|
32 |
+
return nn.Sequential(nn.SyncBatchNorm(num_features, **kwargs), nn.ReLU())
|
33 |
+
elif bn_type == "syncbn":
|
34 |
+
from lib.extensions.syncbn.module import BatchNorm2d
|
35 |
+
|
36 |
+
return nn.Sequential(BatchNorm2d(num_features, **kwargs), nn.ReLU())
|
37 |
+
elif bn_type == "sn":
|
38 |
+
from lib.extensions.switchablenorms.switchable_norm import SwitchNorm2d
|
39 |
+
|
40 |
+
return nn.Sequential(SwitchNorm2d(num_features, **kwargs), nn.ReLU())
|
41 |
+
elif bn_type == "gn":
|
42 |
+
return nn.Sequential(
|
43 |
+
nn.GroupNorm(num_groups=8, num_channels=num_features, **kwargs),
|
44 |
+
nn.ReLU(),
|
45 |
+
)
|
46 |
+
elif bn_type == "fn":
|
47 |
+
Log.error("Not support Filter-Response-Normalization: {}.".format(bn_type))
|
48 |
+
exit(1)
|
49 |
+
elif bn_type == "inplace_abn":
|
50 |
+
torch_ver = torch.__version__[:3]
|
51 |
+
# Log.info('Pytorch Version: {}'.format(torch_ver))
|
52 |
+
if torch_ver == "0.4":
|
53 |
+
from lib.extensions.inplace_abn.bn import InPlaceABNSync
|
54 |
+
|
55 |
+
return InPlaceABNSync(num_features, **kwargs)
|
56 |
+
elif torch_ver in ("1.0", "1.1"):
|
57 |
+
from lib.extensions.inplace_abn_1.bn import InPlaceABNSync
|
58 |
+
|
59 |
+
return InPlaceABNSync(num_features, **kwargs)
|
60 |
+
elif torch_ver == "1.2":
|
61 |
+
from inplace_abn import InPlaceABNSync
|
62 |
+
|
63 |
+
return InPlaceABNSync(num_features, **kwargs)
|
64 |
+
|
65 |
+
else:
|
66 |
+
Log.error("Not support BN type: {}.".format(bn_type))
|
67 |
+
exit(1)
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def BatchNorm2d(bn_type="torch", ret_cls=False):
|
71 |
+
if bn_type == "torchbn":
|
72 |
+
return nn.BatchNorm2d
|
73 |
+
|
74 |
+
elif bn_type == "torchsyncbn":
|
75 |
+
return nn.SyncBatchNorm
|
76 |
+
|
77 |
+
elif bn_type == "syncbn":
|
78 |
+
from lib.extensions.syncbn.module import BatchNorm2d
|
79 |
+
|
80 |
+
return BatchNorm2d
|
81 |
+
|
82 |
+
elif bn_type == "sn":
|
83 |
+
from lib.extensions.switchablenorms.switchable_norm import SwitchNorm2d
|
84 |
+
|
85 |
+
return SwitchNorm2d
|
86 |
+
|
87 |
+
elif bn_type == "gn":
|
88 |
+
return functools.partial(nn.GroupNorm, num_groups=32)
|
89 |
+
|
90 |
+
elif bn_type == "inplace_abn":
|
91 |
+
torch_ver = torch.__version__[:3]
|
92 |
+
if torch_ver == "0.4":
|
93 |
+
from lib.extensions.inplace_abn.bn import InPlaceABNSync
|
94 |
+
|
95 |
+
if ret_cls:
|
96 |
+
return InPlaceABNSync
|
97 |
+
return functools.partial(InPlaceABNSync, activation="none")
|
98 |
+
|
99 |
+
elif torch_ver in ("1.0", "1.1"):
|
100 |
+
from lib.extensions.inplace_abn_1.bn import InPlaceABNSync
|
101 |
+
|
102 |
+
if ret_cls:
|
103 |
+
return InPlaceABNSync
|
104 |
+
return functools.partial(InPlaceABNSync, activation="none")
|
105 |
+
|
106 |
+
elif torch_ver == "1.2":
|
107 |
+
from inplace_abn import InPlaceABNSync
|
108 |
+
|
109 |
+
if ret_cls:
|
110 |
+
return InPlaceABNSync
|
111 |
+
return functools.partial(InPlaceABNSync, activation="identity")
|
112 |
+
|
113 |
+
else:
|
114 |
+
Log.error("Not support BN type: {}.".format(bn_type))
|
115 |
+
exit(1)
|
116 |
+
|
117 |
+
@staticmethod
|
118 |
+
def load_model(model, pretrained=None, all_match=True, network="resnet101"):
|
119 |
+
if pretrained is None:
|
120 |
+
return model
|
121 |
+
|
122 |
+
if all_match:
|
123 |
+
Log.info("Loading pretrained model:{}".format(pretrained))
|
124 |
+
pretrained_dict = torch.load(pretrained)
|
125 |
+
model_dict = model.state_dict()
|
126 |
+
load_dict = dict()
|
127 |
+
for k, v in pretrained_dict.items():
|
128 |
+
if "resinit.{}".format(k) in model_dict:
|
129 |
+
load_dict["resinit.{}".format(k)] = v
|
130 |
+
else:
|
131 |
+
load_dict[k] = v
|
132 |
+
model.load_state_dict(load_dict)
|
133 |
+
|
134 |
+
else:
|
135 |
+
Log.info("Loading pretrained model:{}".format(pretrained))
|
136 |
+
pretrained_dict = torch.load(pretrained)
|
137 |
+
|
138 |
+
# settings for "wide_resnet38" or network == "resnet152"
|
139 |
+
if network == "wide_resnet":
|
140 |
+
pretrained_dict = pretrained_dict["state_dict"]
|
141 |
+
|
142 |
+
model_dict = model.state_dict()
|
143 |
+
|
144 |
+
if network == "hrnet_plus":
|
145 |
+
# pretrained_dict['conv1_full_res.weight'] = pretrained_dict['conv1.weight']
|
146 |
+
# pretrained_dict['conv2_full_res.weight'] = pretrained_dict['conv2.weight']
|
147 |
+
load_dict = {
|
148 |
+
k: v for k, v in pretrained_dict.items() if k in model_dict.keys()
|
149 |
+
}
|
150 |
+
|
151 |
+
elif network == "hrt_window":
|
152 |
+
pretrained_dict = pretrained_dict["model"]
|
153 |
+
for name, m in model.named_parameters():
|
154 |
+
if "relative_position_bias_table" in name and "embed" not in name:
|
155 |
+
target_size = int(math.sqrt(m.shape[0]))
|
156 |
+
head_num = m.shape[-1]
|
157 |
+
ckpt_size = int(math.sqrt(pretrained_dict[name].shape[0]))
|
158 |
+
if target_size != ckpt_size:
|
159 |
+
Log.info(
|
160 |
+
f"Interpolate from size {pretrained_dict[name ].shape} to {m.shape}."
|
161 |
+
)
|
162 |
+
reshape_ckpt = (
|
163 |
+
pretrained_dict[name]
|
164 |
+
.permute(1, 0)
|
165 |
+
.reshape(1, head_num, ckpt_size, ckpt_size)
|
166 |
+
)
|
167 |
+
inter_ckpt = (
|
168 |
+
torch.nn.functional.interpolate(
|
169 |
+
reshape_ckpt,
|
170 |
+
size=(target_size, target_size),
|
171 |
+
mode="bilinear",
|
172 |
+
)
|
173 |
+
.reshape(head_num, -1)
|
174 |
+
.permute(1, 0)
|
175 |
+
)
|
176 |
+
scale = 1
|
177 |
+
inter_ckpt *= scale
|
178 |
+
pretrained_dict[name] = inter_ckpt
|
179 |
+
for name, m in list(pretrained_dict.items()):
|
180 |
+
if "relative_position_index" in name:
|
181 |
+
Log.info(f"Remove {name}.")
|
182 |
+
pretrained_dict.pop(name)
|
183 |
+
load_dict = {
|
184 |
+
k: v for k, v in pretrained_dict.items() if k in model_dict.keys()
|
185 |
+
}
|
186 |
+
Log.info(
|
187 |
+
"Missing keys: {}".format(list(set(model_dict) - set(load_dict)))
|
188 |
+
)
|
189 |
+
|
190 |
+
elif network == "hrt":
|
191 |
+
pretrained_dict = pretrained_dict["model"]
|
192 |
+
load_dict = {
|
193 |
+
k: v for k, v in pretrained_dict.items() if k in model_dict.keys()
|
194 |
+
}
|
195 |
+
Log.info(
|
196 |
+
"Missing keys: {}".format(list(set(model_dict) - set(load_dict)))
|
197 |
+
)
|
198 |
+
|
199 |
+
elif network == "swin":
|
200 |
+
pretrained_dict = pretrained_dict["model"]
|
201 |
+
# TODO fix the mis-match between the dict keys and the checkpoint keys.
|
202 |
+
pretrained_dict = {
|
203 |
+
k.replace(".attn.", ".attn.attn."): v
|
204 |
+
for k, v in pretrained_dict.items()
|
205 |
+
}
|
206 |
+
load_dict = {
|
207 |
+
k: v for k, v in pretrained_dict.items() if k in model_dict.keys()
|
208 |
+
}
|
209 |
+
Log.info(
|
210 |
+
"Missing keys: {}".format(list(set(model_dict) - set(load_dict)))
|
211 |
+
)
|
212 |
+
|
213 |
+
elif network == "hrnet" or network == "xception" or network == "resnest":
|
214 |
+
load_dict = {
|
215 |
+
k: v for k, v in pretrained_dict.items() if k in model_dict.keys()
|
216 |
+
}
|
217 |
+
Log.info(
|
218 |
+
"Missing keys: {}".format(list(set(model_dict) - set(load_dict)))
|
219 |
+
)
|
220 |
+
|
221 |
+
elif network == "dcnet" or network == "resnext":
|
222 |
+
load_dict = dict()
|
223 |
+
for k, v in pretrained_dict.items():
|
224 |
+
if "resinit.{}".format(k) in model_dict:
|
225 |
+
load_dict["resinit.{}".format(k)] = v
|
226 |
+
else:
|
227 |
+
if k in model_dict:
|
228 |
+
load_dict[k] = v
|
229 |
+
else:
|
230 |
+
pass
|
231 |
+
|
232 |
+
elif network == "wide_resnet":
|
233 |
+
load_dict = {
|
234 |
+
".".join(k.split(".")[1:]): v
|
235 |
+
for k, v in pretrained_dict.items()
|
236 |
+
if ".".join(k.split(".")[1:]) in model_dict
|
237 |
+
}
|
238 |
+
else:
|
239 |
+
load_dict = {
|
240 |
+
".".join(k.split(".")[1:]): v
|
241 |
+
for k, v in pretrained_dict.items()
|
242 |
+
if ".".join(k.split(".")[1:]) in model_dict
|
243 |
+
}
|
244 |
+
|
245 |
+
# used to debug
|
246 |
+
if int(os.environ.get("debug_load_model", 0)):
|
247 |
+
Log.info("Matched Keys List:")
|
248 |
+
for key in load_dict.keys():
|
249 |
+
Log.info("{}".format(key))
|
250 |
+
model_dict.update(load_dict)
|
251 |
+
model.load_state_dict(model_dict)
|
252 |
+
|
253 |
+
return model
|
254 |
+
|
255 |
+
@staticmethod
|
256 |
+
def load_url(url, map_location=None):
|
257 |
+
model_dir = os.path.join("~", ".PyTorchCV", "models")
|
258 |
+
if not os.path.exists(model_dir):
|
259 |
+
os.makedirs(model_dir)
|
260 |
+
|
261 |
+
filename = url.split("/")[-1]
|
262 |
+
cached_file = os.path.join(model_dir, filename)
|
263 |
+
if not os.path.exists(cached_file):
|
264 |
+
Log.info('Downloading: "{}" to {}\n'.format(url, cached_file))
|
265 |
+
urlretrieve(url, cached_file)
|
266 |
+
|
267 |
+
Log.info("Loading pretrained model:{}".format(cached_file))
|
268 |
+
return torch.load(cached_file, map_location=map_location)
|
269 |
+
|
270 |
+
@staticmethod
|
271 |
+
def constant_init(module, val, bias=0):
|
272 |
+
nn.init.constant_(module.weight, val)
|
273 |
+
if hasattr(module, "bias") and module.bias is not None:
|
274 |
+
nn.init.constant_(module.bias, bias)
|
275 |
+
|
276 |
+
@staticmethod
|
277 |
+
def xavier_init(module, gain=1, bias=0, distribution="normal"):
|
278 |
+
assert distribution in ["uniform", "normal"]
|
279 |
+
if distribution == "uniform":
|
280 |
+
nn.init.xavier_uniform_(module.weight, gain=gain)
|
281 |
+
else:
|
282 |
+
nn.init.xavier_normal_(module.weight, gain=gain)
|
283 |
+
if hasattr(module, "bias") and module.bias is not None:
|
284 |
+
nn.init.constant_(module.bias, bias)
|
285 |
+
|
286 |
+
@staticmethod
|
287 |
+
def normal_init(module, mean=0, std=1, bias=0):
|
288 |
+
nn.init.normal_(module.weight, mean, std)
|
289 |
+
if hasattr(module, "bias") and module.bias is not None:
|
290 |
+
nn.init.constant_(module.bias, bias)
|
291 |
+
|
292 |
+
@staticmethod
|
293 |
+
def uniform_init(module, a=0, b=1, bias=0):
|
294 |
+
nn.init.uniform_(module.weight, a, b)
|
295 |
+
if hasattr(module, "bias") and module.bias is not None:
|
296 |
+
nn.init.constant_(module.bias, bias)
|
297 |
+
|
298 |
+
@staticmethod
|
299 |
+
def kaiming_init(
|
300 |
+
module, mode="fan_in", nonlinearity="leaky_relu", bias=0, distribution="normal"
|
301 |
+
):
|
302 |
+
assert distribution in ["uniform", "normal"]
|
303 |
+
if distribution == "uniform":
|
304 |
+
nn.init.kaiming_uniform_(
|
305 |
+
module.weight, mode=mode, nonlinearity=nonlinearity
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
nn.init.kaiming_normal_(module.weight, mode=mode, nonlinearity=nonlinearity)
|
309 |
+
if hasattr(module, "bias") and module.bias is not None:
|
310 |
+
nn.init.constant_(module.bias, bias)
|
isegm/model/modeling/hrformer_helper/hrt/modules/__init__.py
ADDED
File without changes
|
isegm/model/modeling/hrformer_helper/hrt/modules/bottleneck_block.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pdb
|
3 |
+
import logging
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
# from torchvision.models.utils import load_state_dict_from_url
|
7 |
+
# from timm.models.registry import register_model
|
8 |
+
from functools import partial
|
9 |
+
|
10 |
+
BN_MOMENTUM = 0.1
|
11 |
+
|
12 |
+
|
13 |
+
class Bottleneck(nn.Module):
|
14 |
+
expansion = 4
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
inplanes,
|
19 |
+
planes,
|
20 |
+
stride=1,
|
21 |
+
downsample=None,
|
22 |
+
mhsa_flag=False,
|
23 |
+
num_heads=1,
|
24 |
+
num_halo_block=1,
|
25 |
+
num_mlp_ratio=4,
|
26 |
+
num_sr_ratio=1,
|
27 |
+
num_resolution=None,
|
28 |
+
with_rpe=False,
|
29 |
+
with_ffn=True,
|
30 |
+
):
|
31 |
+
super(Bottleneck, self).__init__()
|
32 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
33 |
+
self.bn1 = nn.SyncBatchNorm(planes)
|
34 |
+
self.conv2 = nn.Conv2d(
|
35 |
+
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
|
36 |
+
)
|
37 |
+
self.bn2 = nn.SyncBatchNorm(planes)
|
38 |
+
self.conv3 = nn.Conv2d(
|
39 |
+
planes, planes * self.expansion, kernel_size=1, bias=False
|
40 |
+
)
|
41 |
+
self.bn3 = nn.SyncBatchNorm(planes * self.expansion)
|
42 |
+
self.relu = nn.ReLU(inplace=True)
|
43 |
+
self.downsample = downsample
|
44 |
+
self.stride = stride
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
residual = x
|
48 |
+
|
49 |
+
out = self.conv1(x)
|
50 |
+
out = self.bn1(out)
|
51 |
+
out = self.relu(out)
|
52 |
+
|
53 |
+
out = self.conv2(out)
|
54 |
+
out = self.bn2(out)
|
55 |
+
out = self.relu(out)
|
56 |
+
|
57 |
+
out = self.conv3(out)
|
58 |
+
out = self.bn3(out)
|
59 |
+
|
60 |
+
if self.downsample is not None:
|
61 |
+
residual = self.downsample(x)
|
62 |
+
|
63 |
+
out += residual
|
64 |
+
out = self.relu(out)
|
65 |
+
|
66 |
+
return out
|
67 |
+
|
68 |
+
|
69 |
+
class BottleneckDWP(nn.Module):
|
70 |
+
expansion = 4
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
inplanes,
|
75 |
+
planes,
|
76 |
+
stride=1,
|
77 |
+
downsample=None,
|
78 |
+
mhsa_flag=False,
|
79 |
+
num_heads=1,
|
80 |
+
num_halo_block=1,
|
81 |
+
num_mlp_ratio=4,
|
82 |
+
num_sr_ratio=1,
|
83 |
+
num_resolution=None,
|
84 |
+
with_rpe=False,
|
85 |
+
with_ffn=True,
|
86 |
+
):
|
87 |
+
super(BottleneckDWP, self).__init__()
|
88 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
89 |
+
self.bn1 = nn.SyncBatchNorm(planes, momentum=BN_MOMENTUM)
|
90 |
+
self.conv2 = nn.Conv2d(
|
91 |
+
planes,
|
92 |
+
planes,
|
93 |
+
kernel_size=3,
|
94 |
+
stride=stride,
|
95 |
+
padding=1,
|
96 |
+
bias=False,
|
97 |
+
groups=planes,
|
98 |
+
)
|
99 |
+
self.bn2 = nn.SyncBatchNorm(planes, momentum=BN_MOMENTUM)
|
100 |
+
self.conv3 = nn.Conv2d(
|
101 |
+
planes, planes * self.expansion, kernel_size=1, bias=False
|
102 |
+
)
|
103 |
+
self.bn3 = nn.SyncBatchNorm(planes * self.expansion, momentum=BN_MOMENTUM)
|
104 |
+
self.relu = nn.ReLU(inplace=True)
|
105 |
+
self.downsample = downsample
|
106 |
+
self.stride = stride
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
residual = x
|
110 |
+
|
111 |
+
out = self.conv1(x)
|
112 |
+
out = self.bn1(out)
|
113 |
+
out = self.relu(out)
|
114 |
+
|
115 |
+
out = self.conv2(out)
|
116 |
+
out = self.bn2(out)
|
117 |
+
out = self.relu(out)
|
118 |
+
|
119 |
+
out = self.conv3(out)
|
120 |
+
out = self.bn3(out)
|
121 |
+
|
122 |
+
if self.downsample is not None:
|
123 |
+
residual = self.downsample(x)
|
124 |
+
|
125 |
+
out += residual
|
126 |
+
out = self.relu(out)
|
127 |
+
|
128 |
+
return out
|
isegm/model/modeling/hrformer_helper/hrt/modules/ffn_block.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdb
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
|
6 |
+
class Mlp(nn.Module):
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
in_features,
|
10 |
+
hidden_features=None,
|
11 |
+
out_features=None,
|
12 |
+
act_layer=nn.GELU,
|
13 |
+
drop=0.0,
|
14 |
+
):
|
15 |
+
super().__init__()
|
16 |
+
out_features = out_features or in_features
|
17 |
+
hidden_features = hidden_features or in_features
|
18 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
19 |
+
self.act = act_layer()
|
20 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
21 |
+
self.drop = nn.Dropout(drop)
|
22 |
+
|
23 |
+
def forward(self, x, H, W):
|
24 |
+
x = self.fc1(x)
|
25 |
+
x = self.act(x)
|
26 |
+
x = self.drop(x)
|
27 |
+
x = self.fc2(x)
|
28 |
+
x = self.drop(x)
|
29 |
+
return x
|
30 |
+
|
31 |
+
|
32 |
+
class MlpLight(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
in_features,
|
36 |
+
hidden_features=None,
|
37 |
+
out_features=None,
|
38 |
+
act_layer=nn.GELU,
|
39 |
+
drop=0.0,
|
40 |
+
):
|
41 |
+
super().__init__()
|
42 |
+
self.fc1 = nn.Linear(in_features, in_features)
|
43 |
+
self.act = act_layer()
|
44 |
+
self.drop = nn.Dropout(drop)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
x = self.fc1(x)
|
48 |
+
x = self.act(x)
|
49 |
+
x = self.drop(x)
|
50 |
+
return x
|
51 |
+
|
52 |
+
|
53 |
+
class MlpDW(nn.Module):
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
in_features,
|
57 |
+
hidden_features=None,
|
58 |
+
out_features=None,
|
59 |
+
act_layer=nn.GELU,
|
60 |
+
dw_act_layer=nn.GELU,
|
61 |
+
drop=0.0,
|
62 |
+
):
|
63 |
+
super().__init__()
|
64 |
+
out_features = out_features or in_features
|
65 |
+
hidden_features = hidden_features or in_features
|
66 |
+
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1)
|
67 |
+
self.act1 = act_layer()
|
68 |
+
self.dw3x3 = nn.Conv2d(
|
69 |
+
hidden_features,
|
70 |
+
hidden_features,
|
71 |
+
kernel_size=3,
|
72 |
+
stride=1,
|
73 |
+
groups=hidden_features,
|
74 |
+
padding=1,
|
75 |
+
)
|
76 |
+
self.act2 = dw_act_layer()
|
77 |
+
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1)
|
78 |
+
self.drop = nn.Dropout(drop)
|
79 |
+
|
80 |
+
def forward(self, x, H, W):
|
81 |
+
B, N, C = x.shape
|
82 |
+
|
83 |
+
if N == (H * W + 1):
|
84 |
+
cls_tokens = x[:, 0, :]
|
85 |
+
x_ = x[:, 1:, :].permute(0, 2, 1).reshape(B, C, H, W)
|
86 |
+
else:
|
87 |
+
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
88 |
+
|
89 |
+
x_ = self.fc1(x_)
|
90 |
+
x_ = self.act1(x_)
|
91 |
+
x_ = self.dw3x3(x_)
|
92 |
+
x_ = self.act2(x_)
|
93 |
+
x_ = self.drop(x_)
|
94 |
+
x_ = self.fc2(x_)
|
95 |
+
x_ = self.drop(x_)
|
96 |
+
x_ = x_.reshape(B, C, -1).permute(0, 2, 1)
|
97 |
+
|
98 |
+
if N == (H * W + 1):
|
99 |
+
x = torch.cat((cls_tokens.unsqueeze(1), x_), dim=1)
|
100 |
+
else:
|
101 |
+
x = x_
|
102 |
+
|
103 |
+
return x
|
104 |
+
|
105 |
+
|
106 |
+
class MlpDWBN(nn.Module):
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
in_features,
|
110 |
+
hidden_features=None,
|
111 |
+
out_features=None,
|
112 |
+
act_layer=nn.GELU,
|
113 |
+
dw_act_layer=nn.GELU,
|
114 |
+
drop=0.0,
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
out_features = out_features or in_features
|
118 |
+
hidden_features = hidden_features or in_features
|
119 |
+
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1)
|
120 |
+
self.act1 = act_layer()
|
121 |
+
self.norm1 = nn.SyncBatchNorm(hidden_features)
|
122 |
+
self.dw3x3 = nn.Conv2d(
|
123 |
+
hidden_features,
|
124 |
+
hidden_features,
|
125 |
+
kernel_size=3,
|
126 |
+
stride=1,
|
127 |
+
groups=hidden_features,
|
128 |
+
padding=1,
|
129 |
+
)
|
130 |
+
self.act2 = dw_act_layer()
|
131 |
+
self.norm2 = nn.SyncBatchNorm(hidden_features)
|
132 |
+
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1)
|
133 |
+
self.act3 = act_layer()
|
134 |
+
self.norm3 = nn.SyncBatchNorm(out_features)
|
135 |
+
# self.drop = nn.Dropout(drop, inplace=True)
|
136 |
+
|
137 |
+
def forward(self, x, H, W):
|
138 |
+
if len(x.shape) == 3:
|
139 |
+
B, N, C = x.shape
|
140 |
+
if N == (H * W + 1):
|
141 |
+
cls_tokens = x[:, 0, :]
|
142 |
+
x_ = x[:, 1:, :].permute(0, 2, 1).reshape(B, C, H, W)
|
143 |
+
else:
|
144 |
+
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
145 |
+
|
146 |
+
x_ = self.fc1(x_)
|
147 |
+
x_ = self.norm1(x_)
|
148 |
+
x_ = self.act1(x_)
|
149 |
+
x_ = self.dw3x3(x_)
|
150 |
+
x_ = self.norm2(x_)
|
151 |
+
x_ = self.act2(x_)
|
152 |
+
# x_ = self.drop(x_)
|
153 |
+
x_ = self.fc2(x_)
|
154 |
+
x_ = self.norm3(x_)
|
155 |
+
x_ = self.act3(x_)
|
156 |
+
# x_ = self.drop(x_)
|
157 |
+
x_ = x_.reshape(B, C, -1).permute(0, 2, 1)
|
158 |
+
if N == (H * W + 1):
|
159 |
+
x = torch.cat((cls_tokens.unsqueeze(1), x_), dim=1)
|
160 |
+
else:
|
161 |
+
x = x_
|
162 |
+
return x
|
163 |
+
|
164 |
+
elif len(x.shape) == 4:
|
165 |
+
x = self.fc1(x)
|
166 |
+
x = self.norm1(x)
|
167 |
+
x = self.act1(x)
|
168 |
+
x = self.dw3x3(x)
|
169 |
+
x = self.norm2(x)
|
170 |
+
x = self.act2(x)
|
171 |
+
# x = self.drop(x)
|
172 |
+
x = self.fc2(x)
|
173 |
+
x = self.norm3(x)
|
174 |
+
x = self.act3(x)
|
175 |
+
# x = self.drop(x)
|
176 |
+
return x
|
177 |
+
|
178 |
+
else:
|
179 |
+
raise RuntimeError("Unsupported input shape: {}".format(x.shape))
|
180 |
+
|
181 |
+
|
182 |
+
class MlpConvBN(nn.Module):
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
in_features,
|
186 |
+
hidden_features=None,
|
187 |
+
out_features=None,
|
188 |
+
act_layer=nn.GELU,
|
189 |
+
drop=0.0,
|
190 |
+
):
|
191 |
+
super().__init__()
|
192 |
+
out_features = out_features or in_features
|
193 |
+
hidden_features = hidden_features or in_features
|
194 |
+
self.fc1 = nn.Sequential(
|
195 |
+
nn.Conv1d(
|
196 |
+
in_channels=in_features,
|
197 |
+
out_channels=hidden_features,
|
198 |
+
kernel_size=1,
|
199 |
+
stride=1,
|
200 |
+
padding=0,
|
201 |
+
),
|
202 |
+
nn.BatchNorm1d(hidden_features),
|
203 |
+
)
|
204 |
+
self.act = act_layer()
|
205 |
+
self.fc2 = nn.Sequential(
|
206 |
+
nn.Conv1d(
|
207 |
+
in_channels=hidden_features,
|
208 |
+
out_channels=out_features,
|
209 |
+
kernel_size=1,
|
210 |
+
stride=1,
|
211 |
+
padding=0,
|
212 |
+
),
|
213 |
+
nn.BatchNorm1d(out_features),
|
214 |
+
)
|
215 |
+
self.drop = nn.Dropout(drop)
|
216 |
+
|
217 |
+
def forward(self, x):
|
218 |
+
x = x.transpose(1, 2)
|
219 |
+
x = self.fc1(x)
|
220 |
+
x = self.act(x)
|
221 |
+
x = self.drop(x)
|
222 |
+
x = self.fc2(x)
|
223 |
+
x = x.transpose(1, 2)
|
224 |
+
x = self.drop(x)
|
225 |
+
return x
|
226 |
+
|
227 |
+
|
228 |
+
class MlpWODWBN(nn.Module):
|
229 |
+
def __init__(
|
230 |
+
self,
|
231 |
+
in_features,
|
232 |
+
hidden_features=None,
|
233 |
+
out_features=None,
|
234 |
+
act_layer=nn.GELU,
|
235 |
+
dw_act_layer=nn.GELU,
|
236 |
+
drop=0.0,
|
237 |
+
):
|
238 |
+
super().__init__()
|
239 |
+
out_features = out_features or in_features
|
240 |
+
hidden_features = hidden_features or in_features
|
241 |
+
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1)
|
242 |
+
self.act1 = act_layer()
|
243 |
+
self.norm1 = nn.SyncBatchNorm(hidden_features)
|
244 |
+
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1)
|
245 |
+
self.act3 = act_layer()
|
246 |
+
self.norm3 = nn.SyncBatchNorm(out_features)
|
247 |
+
self.drop = nn.Dropout(drop)
|
248 |
+
|
249 |
+
def forward(self, x, H, W):
|
250 |
+
if len(x.shape) == 3:
|
251 |
+
B, N, C = x.shape
|
252 |
+
if N == (H * W + 1):
|
253 |
+
cls_tokens = x[:, 0, :]
|
254 |
+
x_ = x[:, 1:, :].permute(0, 2, 1).reshape(B, C, H, W)
|
255 |
+
else:
|
256 |
+
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
257 |
+
|
258 |
+
x_ = self.fc1(x_)
|
259 |
+
x_ = self.norm1(x_)
|
260 |
+
x_ = self.act1(x_)
|
261 |
+
x_ = self.fc2(x_)
|
262 |
+
x_ = self.norm3(x_)
|
263 |
+
x_ = self.act3(x_)
|
264 |
+
x_ = self.drop(x_)
|
265 |
+
x_ = x_.reshape(B, C, -1).permute(0, 2, 1)
|
266 |
+
if N == (H * W + 1):
|
267 |
+
x = torch.cat((cls_tokens.unsqueeze(1), x_), dim=1)
|
268 |
+
else:
|
269 |
+
x = x_
|
270 |
+
return x
|
271 |
+
|
272 |
+
elif len(x.shape) == 4:
|
273 |
+
x = self.fc1(x)
|
274 |
+
x = self.norm1(x)
|
275 |
+
x = self.act1(x)
|
276 |
+
x = self.dw3x3(x)
|
277 |
+
x = self.norm2(x)
|
278 |
+
x = self.act2(x)
|
279 |
+
x = self.drop(x)
|
280 |
+
x = self.fc2(x)
|
281 |
+
x = self.norm3(x)
|
282 |
+
x = self.act3(x)
|
283 |
+
x = self.drop(x)
|
284 |
+
return x
|
285 |
+
|
286 |
+
else:
|
287 |
+
raise RuntimeError("Unsupported input shape: {}".format(x.shape))
|
isegm/model/modeling/hrformer_helper/hrt/modules/multihead_attention.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch import nn, Tensor
|
7 |
+
from torch.nn.modules.module import Module
|
8 |
+
from torch._jit_internal import Optional, Tuple
|
9 |
+
from torch.nn.functional import linear, pad, softmax, dropout
|
10 |
+
from torch.overrides import has_torch_function, handle_torch_function
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
class MultiheadAttention(Module):
|
15 |
+
bias_k: Optional[torch.Tensor]
|
16 |
+
bias_v: Optional[torch.Tensor]
|
17 |
+
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
embed_dim,
|
21 |
+
num_heads,
|
22 |
+
dropout=0.0,
|
23 |
+
bias=True,
|
24 |
+
add_bias_kv=False,
|
25 |
+
add_zero_attn=False,
|
26 |
+
kdim=None,
|
27 |
+
vdim=None,
|
28 |
+
):
|
29 |
+
super(MultiheadAttention, self).__init__()
|
30 |
+
self.embed_dim = embed_dim
|
31 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
32 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
33 |
+
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
34 |
+
|
35 |
+
self.num_heads = num_heads
|
36 |
+
self.dropout = dropout
|
37 |
+
self.head_dim = embed_dim // num_heads
|
38 |
+
assert (
|
39 |
+
self.head_dim * num_heads == self.embed_dim
|
40 |
+
), "embed_dim must be divisible by num_heads"
|
41 |
+
|
42 |
+
self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias)
|
43 |
+
self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias)
|
44 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
45 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim)
|
46 |
+
|
47 |
+
self.in_proj_bias = None
|
48 |
+
self.in_proj_weight = None
|
49 |
+
self.bias_k = self.bias_v = None
|
50 |
+
self.q_proj_weight = None
|
51 |
+
self.k_proj_weight = None
|
52 |
+
self.v_proj_weight = None
|
53 |
+
self.add_zero_attn = add_zero_attn
|
54 |
+
|
55 |
+
def __setstate__(self, state):
|
56 |
+
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
57 |
+
if "_qkv_same_embed_dim" not in state:
|
58 |
+
state["_qkv_same_embed_dim"] = True
|
59 |
+
|
60 |
+
super(MultiheadAttention, self).__setstate__(state)
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
query,
|
65 |
+
key,
|
66 |
+
value,
|
67 |
+
key_padding_mask=None,
|
68 |
+
need_weights=False,
|
69 |
+
attn_mask=None,
|
70 |
+
residual_attn=None,
|
71 |
+
):
|
72 |
+
if not self._qkv_same_embed_dim:
|
73 |
+
return self.multi_head_attention_forward(
|
74 |
+
query,
|
75 |
+
key,
|
76 |
+
value,
|
77 |
+
self.embed_dim,
|
78 |
+
self.num_heads,
|
79 |
+
self.in_proj_weight,
|
80 |
+
self.in_proj_bias,
|
81 |
+
self.bias_k,
|
82 |
+
self.bias_v,
|
83 |
+
self.add_zero_attn,
|
84 |
+
self.dropout,
|
85 |
+
self.out_proj.weight,
|
86 |
+
self.out_proj.bias,
|
87 |
+
training=self.training,
|
88 |
+
key_padding_mask=key_padding_mask,
|
89 |
+
need_weights=need_weights,
|
90 |
+
attn_mask=attn_mask,
|
91 |
+
use_separate_proj_weight=True,
|
92 |
+
q_proj_weight=self.q_proj_weight,
|
93 |
+
k_proj_weight=self.k_proj_weight,
|
94 |
+
v_proj_weight=self.v_proj_weight,
|
95 |
+
out_dim=self.vdim,
|
96 |
+
residual_attn=residual_attn,
|
97 |
+
)
|
98 |
+
else:
|
99 |
+
return self.multi_head_attention_forward(
|
100 |
+
query,
|
101 |
+
key,
|
102 |
+
value,
|
103 |
+
self.embed_dim,
|
104 |
+
self.num_heads,
|
105 |
+
self.in_proj_weight,
|
106 |
+
self.in_proj_bias,
|
107 |
+
self.bias_k,
|
108 |
+
self.bias_v,
|
109 |
+
self.add_zero_attn,
|
110 |
+
self.dropout,
|
111 |
+
self.out_proj.weight,
|
112 |
+
self.out_proj.bias,
|
113 |
+
training=self.training,
|
114 |
+
key_padding_mask=key_padding_mask,
|
115 |
+
need_weights=need_weights,
|
116 |
+
attn_mask=attn_mask,
|
117 |
+
out_dim=self.vdim,
|
118 |
+
residual_attn=residual_attn,
|
119 |
+
)
|
120 |
+
|
121 |
+
def multi_head_attention_forward(
|
122 |
+
self,
|
123 |
+
query: Tensor,
|
124 |
+
key: Tensor,
|
125 |
+
value: Tensor,
|
126 |
+
embed_dim_to_check: int,
|
127 |
+
num_heads: int,
|
128 |
+
in_proj_weight: Tensor,
|
129 |
+
in_proj_bias: Tensor,
|
130 |
+
bias_k: Optional[Tensor],
|
131 |
+
bias_v: Optional[Tensor],
|
132 |
+
add_zero_attn: bool,
|
133 |
+
dropout_p: float,
|
134 |
+
out_proj_weight: Tensor,
|
135 |
+
out_proj_bias: Tensor,
|
136 |
+
training: bool = True,
|
137 |
+
key_padding_mask: Optional[Tensor] = None,
|
138 |
+
need_weights: bool = False,
|
139 |
+
attn_mask: Optional[Tensor] = None,
|
140 |
+
use_separate_proj_weight: bool = False,
|
141 |
+
q_proj_weight: Optional[Tensor] = None,
|
142 |
+
k_proj_weight: Optional[Tensor] = None,
|
143 |
+
v_proj_weight: Optional[Tensor] = None,
|
144 |
+
static_k: Optional[Tensor] = None,
|
145 |
+
static_v: Optional[Tensor] = None,
|
146 |
+
out_dim: Optional[Tensor] = None,
|
147 |
+
residual_attn: Optional[Tensor] = None,
|
148 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
149 |
+
if not torch.jit.is_scripting():
|
150 |
+
tens_ops = (
|
151 |
+
query,
|
152 |
+
key,
|
153 |
+
value,
|
154 |
+
in_proj_weight,
|
155 |
+
in_proj_bias,
|
156 |
+
bias_k,
|
157 |
+
bias_v,
|
158 |
+
out_proj_weight,
|
159 |
+
out_proj_bias,
|
160 |
+
)
|
161 |
+
if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(
|
162 |
+
tens_ops
|
163 |
+
):
|
164 |
+
return handle_torch_function(
|
165 |
+
multi_head_attention_forward,
|
166 |
+
tens_ops,
|
167 |
+
query,
|
168 |
+
key,
|
169 |
+
value,
|
170 |
+
embed_dim_to_check,
|
171 |
+
num_heads,
|
172 |
+
in_proj_weight,
|
173 |
+
in_proj_bias,
|
174 |
+
bias_k,
|
175 |
+
bias_v,
|
176 |
+
add_zero_attn,
|
177 |
+
dropout_p,
|
178 |
+
out_proj_weight,
|
179 |
+
out_proj_bias,
|
180 |
+
training=training,
|
181 |
+
key_padding_mask=key_padding_mask,
|
182 |
+
need_weights=need_weights,
|
183 |
+
attn_mask=attn_mask,
|
184 |
+
use_separate_proj_weight=use_separate_proj_weight,
|
185 |
+
q_proj_weight=q_proj_weight,
|
186 |
+
k_proj_weight=k_proj_weight,
|
187 |
+
v_proj_weight=v_proj_weight,
|
188 |
+
static_k=static_k,
|
189 |
+
static_v=static_v,
|
190 |
+
)
|
191 |
+
tgt_len, bsz, embed_dim = query.size()
|
192 |
+
key = query if key is None else key
|
193 |
+
value = query if value is None else value
|
194 |
+
|
195 |
+
assert embed_dim == embed_dim_to_check
|
196 |
+
# allow MHA to have different sizes for the feature dimension
|
197 |
+
assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
|
198 |
+
|
199 |
+
head_dim = embed_dim // num_heads
|
200 |
+
v_head_dim = out_dim // num_heads
|
201 |
+
assert (
|
202 |
+
head_dim * num_heads == embed_dim
|
203 |
+
), "embed_dim must be divisible by num_heads"
|
204 |
+
scaling = float(head_dim) ** -0.5
|
205 |
+
|
206 |
+
q = self.q_proj(query) * scaling
|
207 |
+
k = self.k_proj(key)
|
208 |
+
v = self.v_proj(value)
|
209 |
+
|
210 |
+
if attn_mask is not None:
|
211 |
+
assert (
|
212 |
+
attn_mask.dtype == torch.float32
|
213 |
+
or attn_mask.dtype == torch.float64
|
214 |
+
or attn_mask.dtype == torch.float16
|
215 |
+
or attn_mask.dtype == torch.uint8
|
216 |
+
or attn_mask.dtype == torch.bool
|
217 |
+
), "Only float, byte, and bool types are supported for attn_mask, not {}".format(
|
218 |
+
attn_mask.dtype
|
219 |
+
)
|
220 |
+
if attn_mask.dtype == torch.uint8:
|
221 |
+
warnings.warn(
|
222 |
+
"Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
|
223 |
+
)
|
224 |
+
attn_mask = attn_mask.to(torch.bool)
|
225 |
+
|
226 |
+
if attn_mask.dim() == 2:
|
227 |
+
attn_mask = attn_mask.unsqueeze(0)
|
228 |
+
if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
|
229 |
+
raise RuntimeError("The size of the 2D attn_mask is not correct.")
|
230 |
+
elif attn_mask.dim() == 3:
|
231 |
+
if list(attn_mask.size()) != [
|
232 |
+
bsz * num_heads,
|
233 |
+
query.size(0),
|
234 |
+
key.size(0),
|
235 |
+
]:
|
236 |
+
raise RuntimeError("The size of the 3D attn_mask is not correct.")
|
237 |
+
else:
|
238 |
+
raise RuntimeError(
|
239 |
+
"attn_mask's dimension {} is not supported".format(attn_mask.dim())
|
240 |
+
)
|
241 |
+
|
242 |
+
# convert ByteTensor key_padding_mask to bool
|
243 |
+
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
|
244 |
+
warnings.warn(
|
245 |
+
"Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead."
|
246 |
+
)
|
247 |
+
key_padding_mask = key_padding_mask.to(torch.bool)
|
248 |
+
|
249 |
+
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
250 |
+
if k is not None:
|
251 |
+
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
|
252 |
+
if v is not None:
|
253 |
+
v = v.contiguous().view(-1, bsz * num_heads, v_head_dim).transpose(0, 1)
|
254 |
+
|
255 |
+
src_len = k.size(1)
|
256 |
+
|
257 |
+
if key_padding_mask is not None:
|
258 |
+
assert key_padding_mask.size(0) == bsz
|
259 |
+
assert key_padding_mask.size(1) == src_len
|
260 |
+
|
261 |
+
if add_zero_attn:
|
262 |
+
src_len += 1
|
263 |
+
k = torch.cat(
|
264 |
+
[
|
265 |
+
k,
|
266 |
+
torch.zeros(
|
267 |
+
(k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device
|
268 |
+
),
|
269 |
+
],
|
270 |
+
dim=1,
|
271 |
+
)
|
272 |
+
v = torch.cat(
|
273 |
+
[
|
274 |
+
v,
|
275 |
+
torch.zeros(
|
276 |
+
(v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device
|
277 |
+
),
|
278 |
+
],
|
279 |
+
dim=1,
|
280 |
+
)
|
281 |
+
if attn_mask is not None:
|
282 |
+
attn_mask = pad(attn_mask, (0, 1))
|
283 |
+
if key_padding_mask is not None:
|
284 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
285 |
+
|
286 |
+
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
|
287 |
+
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
|
288 |
+
|
289 |
+
"""
|
290 |
+
Attention weight for the invalid region is -inf
|
291 |
+
"""
|
292 |
+
if attn_mask is not None:
|
293 |
+
if attn_mask.dtype == torch.bool:
|
294 |
+
attn_output_weights.masked_fill_(attn_mask, float("-inf"))
|
295 |
+
else:
|
296 |
+
attn_output_weights += attn_mask
|
297 |
+
|
298 |
+
if key_padding_mask is not None:
|
299 |
+
attn_output_weights = attn_output_weights.view(
|
300 |
+
bsz, num_heads, tgt_len, src_len
|
301 |
+
)
|
302 |
+
attn_output_weights = attn_output_weights.masked_fill(
|
303 |
+
key_padding_mask.unsqueeze(1).unsqueeze(2),
|
304 |
+
float("-inf"),
|
305 |
+
)
|
306 |
+
attn_output_weights = attn_output_weights.view(
|
307 |
+
bsz * num_heads, tgt_len, src_len
|
308 |
+
)
|
309 |
+
|
310 |
+
if residual_attn is not None:
|
311 |
+
attn_output_weights = attn_output_weights.view(
|
312 |
+
bsz, num_heads, tgt_len, src_len
|
313 |
+
)
|
314 |
+
attn_output_weights += residual_attn.unsqueeze(0)
|
315 |
+
attn_output_weights = attn_output_weights.view(
|
316 |
+
bsz * num_heads, tgt_len, src_len
|
317 |
+
)
|
318 |
+
|
319 |
+
"""
|
320 |
+
Reweight the attention map before softmax().
|
321 |
+
attn_output_weights: (b*n_head, n, hw)
|
322 |
+
"""
|
323 |
+
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
324 |
+
attn_output_weights = dropout(
|
325 |
+
attn_output_weights, p=dropout_p, training=training
|
326 |
+
)
|
327 |
+
|
328 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
329 |
+
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, v_head_dim]
|
330 |
+
attn_output = (
|
331 |
+
attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, out_dim)
|
332 |
+
)
|
333 |
+
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
334 |
+
|
335 |
+
if need_weights:
|
336 |
+
# average attention weights over heads
|
337 |
+
attn_output_weights = attn_output_weights.view(
|
338 |
+
bsz, num_heads, tgt_len, src_len
|
339 |
+
)
|
340 |
+
return attn_output, attn_output_weights.sum(dim=1) / num_heads
|
341 |
+
else:
|
342 |
+
return attn_output
|