Spaces:
Runtime error
Runtime error
Update web_demo.py
Browse files- web_demo.py +60 -29
web_demo.py
CHANGED
@@ -8,11 +8,9 @@ import requests
|
|
8 |
from argparse import ArgumentParser
|
9 |
|
10 |
import torchaudio
|
11 |
-
from transformers import WhisperFeatureExtractor, AutoTokenizer
|
12 |
from speech_tokenizer.modeling_whisper import WhisperVQEncoder
|
13 |
-
#import os
|
14 |
|
15 |
-
#os.environ["no_proxy"]="localhost,127.0.0.1,::1"
|
16 |
|
17 |
sys.path.insert(0, "./cosyvoice")
|
18 |
sys.path.insert(0, "./third_party/Matcha-TTS")
|
@@ -22,19 +20,28 @@ from speech_tokenizer.utils import extract_speech_token
|
|
22 |
import gradio as gr
|
23 |
import torch
|
24 |
|
|
|
25 |
audio_token_pattern = re.compile(r"<\|audio_(\d+)\|>")
|
26 |
|
27 |
from flow_inference import AudioDecoder
|
28 |
|
|
|
|
|
|
|
|
|
29 |
if __name__ == "__main__":
|
30 |
parser = ArgumentParser()
|
31 |
parser.add_argument("--host", type=str, default="0.0.0.0")
|
32 |
parser.add_argument("--port", type=int, default="8888")
|
33 |
parser.add_argument("--flow-path", type=str, default="./glm-4-voice-decoder")
|
34 |
parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
|
35 |
-
parser.add_argument("--tokenizer-path", type=str, default="THUDM/glm-4-voice-tokenizer")
|
36 |
args = parser.parse_args()
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
flow_config = os.path.join(args.flow_path, "config.yaml")
|
39 |
flow_checkpoint = os.path.join(args.flow_path, 'flow.pt')
|
40 |
hift_checkpoint = os.path.join(args.flow_path, 'hift.pt')
|
@@ -42,7 +49,7 @@ if __name__ == "__main__":
|
|
42 |
device = "cuda"
|
43 |
audio_decoder: AudioDecoder = None
|
44 |
whisper_model, feature_extractor = None, None
|
45 |
-
|
46 |
|
47 |
def initialize_fn():
|
48 |
global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
|
@@ -61,12 +68,18 @@ if __name__ == "__main__":
|
|
61 |
whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
|
62 |
feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
def clear_fn():
|
66 |
return [], [], '', '', '', None, None
|
67 |
|
68 |
|
69 |
-
def inference_fn(
|
70 |
temperature: float,
|
71 |
top_p: float,
|
72 |
max_new_token: int,
|
@@ -105,17 +118,26 @@ def inference_fn(
|
|
105 |
inputs += f"<|system|>\n{system_prompt}"
|
106 |
inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"
|
107 |
|
|
|
108 |
with torch.no_grad():
|
109 |
-
|
110 |
-
"
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
text_tokens, audio_tokens = [], []
|
120 |
audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
|
121 |
end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
|
@@ -128,7 +150,8 @@ def inference_fn(
|
|
128 |
prev_mel = None
|
129 |
is_finalize = False
|
130 |
block_size = 10
|
131 |
-
for chunk in response.iter_lines():
|
|
|
132 |
token_id = json.loads(chunk)["token_id"]
|
133 |
if token_id == end_token_id:
|
134 |
is_finalize = True
|
@@ -165,15 +188,15 @@ def inference_fn(
|
|
165 |
yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())
|
166 |
|
167 |
|
168 |
-
def update_input_interface(input_mode):
|
169 |
if input_mode == "audio":
|
170 |
return [gr.update(visible=True), gr.update(visible=False)]
|
171 |
else:
|
172 |
return [gr.update(visible=False), gr.update(visible=True)]
|
173 |
|
174 |
|
175 |
-
# Create the Gradio interface
|
176 |
-
with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
|
177 |
with gr.Row():
|
178 |
temperature = gr.Number(
|
179 |
label="Temperature",
|
@@ -200,7 +223,9 @@ with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
|
|
200 |
with gr.Row():
|
201 |
with gr.Column():
|
202 |
input_mode = gr.Radio(["audio", "text"], label="Input Mode", value="audio")
|
203 |
-
audio = gr.Audio(label="Input audio", type='filepath', show_download_button=True, visible=True)
|
|
|
|
|
204 |
text_input = gr.Textbox(label="Input text", placeholder="Enter your text here...", lines=2, visible=False)
|
205 |
|
206 |
with gr.Column():
|
@@ -252,10 +277,16 @@ with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
|
|
252 |
reset_btn.click(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio])
|
253 |
input_mode.input(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio]).then(update_input_interface, inputs=[input_mode], outputs=[audio, text_input])
|
254 |
|
255 |
-
initialize_fn()
|
256 |
-
# Launch the interface
|
257 |
-
demo.launch(
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
from argparse import ArgumentParser
|
9 |
|
10 |
import torchaudio
|
11 |
+
from transformers import WhisperFeatureExtractor, AutoTokenizer
|
12 |
from speech_tokenizer.modeling_whisper import WhisperVQEncoder
|
|
|
13 |
|
|
|
14 |
|
15 |
sys.path.insert(0, "./cosyvoice")
|
16 |
sys.path.insert(0, "./third_party/Matcha-TTS")
|
|
|
20 |
import gradio as gr
|
21 |
import torch
|
22 |
|
23 |
+
|
24 |
audio_token_pattern = re.compile(r"<\|audio_(\d+)\|>")
|
25 |
|
26 |
from flow_inference import AudioDecoder
|
27 |
|
28 |
+
use_local_interface = True
|
29 |
+
if use_local_interface :
|
30 |
+
from model_server import ModelWorker
|
31 |
+
|
32 |
if __name__ == "__main__":
|
33 |
parser = ArgumentParser()
|
34 |
parser.add_argument("--host", type=str, default="0.0.0.0")
|
35 |
parser.add_argument("--port", type=int, default="8888")
|
36 |
parser.add_argument("--flow-path", type=str, default="./glm-4-voice-decoder")
|
37 |
parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
|
38 |
+
parser.add_argument("--tokenizer-path", type= str, default="THUDM/glm-4-voice-tokenizer")
|
39 |
args = parser.parse_args()
|
40 |
+
# --tokenizer-path /home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-tokenizer --model-path /home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-9b --flow-path /home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-decoder
|
41 |
+
# args.tokenizer_path = '/home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-tokenizer'
|
42 |
+
# args.model_path = '/home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-9b'
|
43 |
+
# args.flow_path = '/home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-decoder'
|
44 |
+
|
45 |
flow_config = os.path.join(args.flow_path, "config.yaml")
|
46 |
flow_checkpoint = os.path.join(args.flow_path, 'flow.pt')
|
47 |
hift_checkpoint = os.path.join(args.flow_path, 'hift.pt')
|
|
|
49 |
device = "cuda"
|
50 |
audio_decoder: AudioDecoder = None
|
51 |
whisper_model, feature_extractor = None, None
|
52 |
+
worker = None
|
53 |
|
54 |
def initialize_fn():
|
55 |
global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
|
|
|
68 |
whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
|
69 |
feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
|
70 |
|
71 |
+
global use_local_interface, worker
|
72 |
+
if use_local_interface :
|
73 |
+
model_path0 = 'THUDM/glm-4-voice-9b '
|
74 |
+
# dtype = 'bfloat16'
|
75 |
+
device0 = 'cuda:0'
|
76 |
+
worker = ModelWorker(model_path0,device0)
|
77 |
|
78 |
def clear_fn():
|
79 |
return [], [], '', '', '', None, None
|
80 |
|
81 |
|
82 |
+
def inference_fn(
|
83 |
temperature: float,
|
84 |
top_p: float,
|
85 |
max_new_token: int,
|
|
|
118 |
inputs += f"<|system|>\n{system_prompt}"
|
119 |
inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"
|
120 |
|
121 |
+
global use_local_interface , worker
|
122 |
with torch.no_grad():
|
123 |
+
if use_local_interface :
|
124 |
+
params = { "prompt": inputs,
|
125 |
+
"temperature": temperature,
|
126 |
+
"top_p": top_p,
|
127 |
+
"max_new_tokens": max_new_token, }
|
128 |
+
response = worker.generate_stream( params )
|
129 |
+
|
130 |
+
else :
|
131 |
+
response = requests.post(
|
132 |
+
"http://localhost:10000/generate_stream",
|
133 |
+
data=json.dumps({
|
134 |
+
"prompt": inputs,
|
135 |
+
"temperature": temperature,
|
136 |
+
"top_p": top_p,
|
137 |
+
"max_new_tokens": max_new_token,
|
138 |
+
}),
|
139 |
+
stream=True
|
140 |
+
)
|
141 |
text_tokens, audio_tokens = [], []
|
142 |
audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
|
143 |
end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
|
|
|
150 |
prev_mel = None
|
151 |
is_finalize = False
|
152 |
block_size = 10
|
153 |
+
# for chunk in response.iter_lines():
|
154 |
+
for chunk in response :
|
155 |
token_id = json.loads(chunk)["token_id"]
|
156 |
if token_id == end_token_id:
|
157 |
is_finalize = True
|
|
|
188 |
yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())
|
189 |
|
190 |
|
191 |
+
def update_input_interface(input_mode):
|
192 |
if input_mode == "audio":
|
193 |
return [gr.update(visible=True), gr.update(visible=False)]
|
194 |
else:
|
195 |
return [gr.update(visible=False), gr.update(visible=True)]
|
196 |
|
197 |
|
198 |
+
# Create the Gradio interface
|
199 |
+
with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
|
200 |
with gr.Row():
|
201 |
temperature = gr.Number(
|
202 |
label="Temperature",
|
|
|
223 |
with gr.Row():
|
224 |
with gr.Column():
|
225 |
input_mode = gr.Radio(["audio", "text"], label="Input Mode", value="audio")
|
226 |
+
# audio = gr.Audio(label="Input audio", type='filepath', show_download_button=True, visible=True)
|
227 |
+
audio = gr.Audio(sources=["upload","microphone"], label="Input audio", type='filepath', show_download_button=True, visible=True)
|
228 |
+
# audio = gr.Audio(source="microphone", label="Input audio", type='filepath', show_download_button=True, visible=True)
|
229 |
text_input = gr.Textbox(label="Input text", placeholder="Enter your text here...", lines=2, visible=False)
|
230 |
|
231 |
with gr.Column():
|
|
|
277 |
reset_btn.click(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio])
|
278 |
input_mode.input(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio]).then(update_input_interface, inputs=[input_mode], outputs=[audio, text_input])
|
279 |
|
280 |
+
initialize_fn()
|
281 |
+
# Launch the interface
|
282 |
+
demo.launch(
|
283 |
+
server_port=args.port,
|
284 |
+
server_name=args.host,
|
285 |
+
ssl_verify=False,
|
286 |
+
share=True
|
287 |
+
)
|
288 |
+
|
289 |
+
'''
|
290 |
+
server.launch(share=True)
|
291 |
+
https://1a9b77cb89ac33f546.gradio.live
|
292 |
+
'''
|