Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os.path
|
3 |
+
import tempfile
|
4 |
+
import sys
|
5 |
+
import re
|
6 |
+
import uuid
|
7 |
+
import requests
|
8 |
+
from argparse import ArgumentParser
|
9 |
+
|
10 |
+
import torchaudio
|
11 |
+
from transformers import WhisperFeatureExtractor, AutoTokenizer
|
12 |
+
from speech_tokenizer.modeling_whisper import WhisperVQEncoder
|
13 |
+
|
14 |
+
|
15 |
+
sys.path.insert(0, "./cosyvoice")
|
16 |
+
sys.path.insert(0, "./third_party/Matcha-TTS")
|
17 |
+
|
18 |
+
from speech_tokenizer.utils import extract_speech_token
|
19 |
+
|
20 |
+
import gradio as gr
|
21 |
+
import torch
|
22 |
+
|
23 |
+
|
24 |
+
audio_token_pattern = re.compile(r"<\|audio_(\d+)\|>")
|
25 |
+
|
26 |
+
from flow_inference import AudioDecoder
|
27 |
+
|
28 |
+
use_local_interface = True
|
29 |
+
if use_local_interface :
|
30 |
+
from model_server import ModelWorker
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
parser = ArgumentParser()
|
34 |
+
parser.add_argument("--host", type=str, default="0.0.0.0")
|
35 |
+
parser.add_argument("--port", type=int, default="8888")
|
36 |
+
parser.add_argument("--flow-path", type=str, default="./glm-4-voice-decoder")
|
37 |
+
parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
|
38 |
+
parser.add_argument("--tokenizer-path", type= str, default="THUDM/glm-4-voice-tokenizer")
|
39 |
+
args = parser.parse_args()
|
40 |
+
# --tokenizer-path /home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-tokenizer --model-path /home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-9b --flow-path /home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-decoder
|
41 |
+
# args.tokenizer_path = '/home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-tokenizer'
|
42 |
+
# args.model_path = '/home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-9b'
|
43 |
+
# args.flow_path = '/home/hanrf/llm/voice/model/ZhipuAI/glm-4-voice-decoder'
|
44 |
+
|
45 |
+
flow_config = os.path.join(args.flow_path, "config.yaml")
|
46 |
+
flow_checkpoint = os.path.join(args.flow_path, 'flow.pt')
|
47 |
+
hift_checkpoint = os.path.join(args.flow_path, 'hift.pt')
|
48 |
+
glm_tokenizer = None
|
49 |
+
device = "cuda"
|
50 |
+
audio_decoder: AudioDecoder = None
|
51 |
+
whisper_model, feature_extractor = None, None
|
52 |
+
worker = None
|
53 |
+
|
54 |
+
def initialize_fn():
|
55 |
+
global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
|
56 |
+
if audio_decoder is not None:
|
57 |
+
return
|
58 |
+
|
59 |
+
# GLM
|
60 |
+
glm_tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
|
61 |
+
|
62 |
+
# Flow & Hift
|
63 |
+
audio_decoder = AudioDecoder(config_path=flow_config, flow_ckpt_path=flow_checkpoint,
|
64 |
+
hift_ckpt_path=hift_checkpoint,
|
65 |
+
device=device)
|
66 |
+
|
67 |
+
# Speech tokenizer
|
68 |
+
whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
|
69 |
+
feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
|
70 |
+
|
71 |
+
global use_local_interface, worker
|
72 |
+
if use_local_interface :
|
73 |
+
model_path0 = 'THUDM/glm-4-voice-9b '
|
74 |
+
# dtype = 'bfloat16'
|
75 |
+
device0 = 'cuda:0'
|
76 |
+
worker = ModelWorker(model_path0,device0)
|
77 |
+
|
78 |
+
def clear_fn():
|
79 |
+
return [], [], '', '', '', None, None
|
80 |
+
|
81 |
+
|
82 |
+
def inference_fn(
|
83 |
+
temperature: float,
|
84 |
+
top_p: float,
|
85 |
+
max_new_token: int,
|
86 |
+
input_mode,
|
87 |
+
audio_path: str | None,
|
88 |
+
input_text: str | None,
|
89 |
+
history: list[dict],
|
90 |
+
previous_input_tokens: str,
|
91 |
+
previous_completion_tokens: str,
|
92 |
+
):
|
93 |
+
|
94 |
+
if input_mode == "audio":
|
95 |
+
assert audio_path is not None
|
96 |
+
history.append({"role": "user", "content": {"path": audio_path}})
|
97 |
+
audio_tokens = extract_speech_token(
|
98 |
+
whisper_model, feature_extractor, [audio_path]
|
99 |
+
)[0]
|
100 |
+
if len(audio_tokens) == 0:
|
101 |
+
raise gr.Error("No audio tokens extracted")
|
102 |
+
audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens])
|
103 |
+
audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>"
|
104 |
+
user_input = audio_tokens
|
105 |
+
system_prompt = "User will provide you with a speech instruction. Do it step by step. First, think about the instruction and respond in a interleaved manner, with 13 text token followed by 26 audio tokens. "
|
106 |
+
|
107 |
+
else:
|
108 |
+
assert input_text is not None
|
109 |
+
history.append({"role": "user", "content": input_text})
|
110 |
+
user_input = input_text
|
111 |
+
system_prompt = "User will provide you with a text instruction. Do it step by step. First, think about the instruction and respond in a interleaved manner, with 13 text token followed by 26 audio tokens."
|
112 |
+
|
113 |
+
|
114 |
+
# Gather history
|
115 |
+
inputs = previous_input_tokens + previous_completion_tokens
|
116 |
+
inputs = inputs.strip()
|
117 |
+
if "<|system|>" not in inputs:
|
118 |
+
inputs += f"<|system|>\n{system_prompt}"
|
119 |
+
inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"
|
120 |
+
|
121 |
+
global use_local_interface , worker
|
122 |
+
with torch.no_grad():
|
123 |
+
if use_local_interface :
|
124 |
+
params = { "prompt": inputs,
|
125 |
+
"temperature": temperature,
|
126 |
+
"top_p": top_p,
|
127 |
+
"max_new_tokens": max_new_token, }
|
128 |
+
response = worker.generate_stream( params )
|
129 |
+
|
130 |
+
else :
|
131 |
+
response = requests.post(
|
132 |
+
"http://localhost:10000/generate_stream",
|
133 |
+
data=json.dumps({
|
134 |
+
"prompt": inputs,
|
135 |
+
"temperature": temperature,
|
136 |
+
"top_p": top_p,
|
137 |
+
"max_new_tokens": max_new_token,
|
138 |
+
}),
|
139 |
+
stream=True
|
140 |
+
)
|
141 |
+
text_tokens, audio_tokens = [], []
|
142 |
+
audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
|
143 |
+
end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
|
144 |
+
complete_tokens = []
|
145 |
+
prompt_speech_feat = torch.zeros(1, 0, 80).to(device)
|
146 |
+
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device)
|
147 |
+
this_uuid = str(uuid.uuid4())
|
148 |
+
tts_speechs = []
|
149 |
+
tts_mels = []
|
150 |
+
prev_mel = None
|
151 |
+
is_finalize = False
|
152 |
+
block_size = 10
|
153 |
+
# for chunk in response.iter_lines():
|
154 |
+
for chunk in response :
|
155 |
+
token_id = json.loads(chunk)["token_id"]
|
156 |
+
if token_id == end_token_id:
|
157 |
+
is_finalize = True
|
158 |
+
if len(audio_tokens) >= block_size or (is_finalize and audio_tokens):
|
159 |
+
block_size = 20
|
160 |
+
tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0)
|
161 |
+
|
162 |
+
if prev_mel is not None:
|
163 |
+
prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)
|
164 |
+
|
165 |
+
tts_speech, tts_mel = audio_decoder.token2wav(tts_token, uuid=this_uuid,
|
166 |
+
prompt_token=flow_prompt_speech_token.to(device),
|
167 |
+
prompt_feat=prompt_speech_feat.to(device),
|
168 |
+
finalize=is_finalize)
|
169 |
+
prev_mel = tts_mel
|
170 |
+
|
171 |
+
tts_speechs.append(tts_speech.squeeze())
|
172 |
+
tts_mels.append(tts_mel)
|
173 |
+
yield history, inputs, '', '', (22050, tts_speech.squeeze().cpu().numpy()), None
|
174 |
+
flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1)
|
175 |
+
audio_tokens = []
|
176 |
+
if not is_finalize:
|
177 |
+
complete_tokens.append(token_id)
|
178 |
+
if token_id >= audio_offset:
|
179 |
+
audio_tokens.append(token_id - audio_offset)
|
180 |
+
else:
|
181 |
+
text_tokens.append(token_id)
|
182 |
+
tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
|
183 |
+
complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False)
|
184 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
|
185 |
+
torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav")
|
186 |
+
history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}})
|
187 |
+
history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)})
|
188 |
+
yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())
|
189 |
+
|
190 |
+
|
191 |
+
def update_input_interface(input_mode):
|
192 |
+
if input_mode == "audio":
|
193 |
+
return [gr.update(visible=True), gr.update(visible=False)]
|
194 |
+
else:
|
195 |
+
return [gr.update(visible=False), gr.update(visible=True)]
|
196 |
+
|
197 |
+
|
198 |
+
# Create the Gradio interface
|
199 |
+
with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
|
200 |
+
with gr.Row():
|
201 |
+
temperature = gr.Number(
|
202 |
+
label="Temperature",
|
203 |
+
value=0.2
|
204 |
+
)
|
205 |
+
|
206 |
+
top_p = gr.Number(
|
207 |
+
label="Top p",
|
208 |
+
value=0.8
|
209 |
+
)
|
210 |
+
|
211 |
+
max_new_token = gr.Number(
|
212 |
+
label="Max new tokens",
|
213 |
+
value=2000,
|
214 |
+
)
|
215 |
+
|
216 |
+
chatbot = gr.Chatbot(
|
217 |
+
elem_id="chatbot",
|
218 |
+
bubble_full_width=False,
|
219 |
+
type="messages",
|
220 |
+
scale=1,
|
221 |
+
)
|
222 |
+
|
223 |
+
with gr.Row():
|
224 |
+
with gr.Column():
|
225 |
+
input_mode = gr.Radio(["audio", "text"], label="Input Mode", value="audio")
|
226 |
+
# audio = gr.Audio(label="Input audio", type='filepath', show_download_button=True, visible=True)
|
227 |
+
audio = gr.Audio(sources=["upload","microphone"], label="Input audio", type='filepath', show_download_button=True, visible=True)
|
228 |
+
# audio = gr.Audio(source="microphone", label="Input audio", type='filepath', show_download_button=True, visible=True)
|
229 |
+
text_input = gr.Textbox(label="Input text", placeholder="Enter your text here...", lines=2, visible=False)
|
230 |
+
|
231 |
+
with gr.Column():
|
232 |
+
submit_btn = gr.Button("Submit")
|
233 |
+
reset_btn = gr.Button("Clear")
|
234 |
+
output_audio = gr.Audio(label="Play", streaming=True,
|
235 |
+
autoplay=True, show_download_button=False)
|
236 |
+
complete_audio = gr.Audio(label="Last Output Audio (If Any)", show_download_button=True)
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
gr.Markdown("""## Debug Info""")
|
241 |
+
with gr.Row():
|
242 |
+
input_tokens = gr.Textbox(
|
243 |
+
label=f"Input Tokens",
|
244 |
+
interactive=False,
|
245 |
+
)
|
246 |
+
|
247 |
+
completion_tokens = gr.Textbox(
|
248 |
+
label=f"Completion Tokens",
|
249 |
+
interactive=False,
|
250 |
+
)
|
251 |
+
|
252 |
+
detailed_error = gr.Textbox(
|
253 |
+
label=f"Detailed Error",
|
254 |
+
interactive=False,
|
255 |
+
)
|
256 |
+
|
257 |
+
history_state = gr.State([])
|
258 |
+
|
259 |
+
respond = submit_btn.click(
|
260 |
+
inference_fn,
|
261 |
+
inputs=[
|
262 |
+
temperature,
|
263 |
+
top_p,
|
264 |
+
max_new_token,
|
265 |
+
input_mode,
|
266 |
+
audio,
|
267 |
+
text_input,
|
268 |
+
history_state,
|
269 |
+
input_tokens,
|
270 |
+
completion_tokens,
|
271 |
+
],
|
272 |
+
outputs=[history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio]
|
273 |
+
)
|
274 |
+
|
275 |
+
respond.then(lambda s: s, [history_state], chatbot)
|
276 |
+
|
277 |
+
reset_btn.click(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio])
|
278 |
+
input_mode.input(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio]).then(update_input_interface, inputs=[input_mode], outputs=[audio, text_input])
|
279 |
+
|
280 |
+
initialize_fn()
|
281 |
+
# Launch the interface
|
282 |
+
demo.launch(
|
283 |
+
server_port=args.port,
|
284 |
+
server_name=args.host,
|
285 |
+
ssl_verify=False,
|
286 |
+
share=True
|
287 |
+
)
|
288 |
+
|
289 |
+
'''
|
290 |
+
server.launch(share=True)
|
291 |
+
https://1a9b77cb89ac33f546.gradio.live
|
292 |
+
|
293 |
+
'''
|