Spaces:
Runtime error
Runtime error
import torch | |
import torchaudio | |
import numpy as np | |
import re | |
from hyperpyyaml import load_hyperpyyaml | |
import uuid | |
from collections import defaultdict | |
def fade_in_out(fade_in_mel, fade_out_mel, window): | |
device = fade_in_mel.device | |
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu() | |
mel_overlap_len = int(window.shape[0] / 2) | |
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \ | |
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:] | |
return fade_in_mel.to(device) | |
class AudioDecoder: | |
def __init__(self, config_path, flow_ckpt_path, hift_ckpt_path, device="cuda"): | |
self.device = device | |
with open(config_path, 'r') as f: | |
self.scratch_configs = load_hyperpyyaml(f) | |
# Load models | |
self.flow = self.scratch_configs['flow'] | |
self.flow.load_state_dict(torch.load(flow_ckpt_path, map_location=self.device)) | |
self.hift = self.scratch_configs['hift'] | |
self.hift.load_state_dict(torch.load(hift_ckpt_path, map_location=self.device)) | |
# Move models to the appropriate device | |
self.flow.to(self.device) | |
self.hift.to(self.device) | |
self.mel_overlap_dict = defaultdict(lambda: None) | |
self.hift_cache_dict = defaultdict(lambda: None) | |
self.token_min_hop_len = 2 * self.flow.input_frame_rate | |
self.token_max_hop_len = 4 * self.flow.input_frame_rate | |
self.token_overlap_len = 5 | |
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256) | |
self.mel_window = np.hamming(2 * self.mel_overlap_len) | |
# hift cache | |
self.mel_cache_len = 1 | |
self.source_cache_len = int(self.mel_cache_len * 256) | |
# speech fade in out | |
self.speech_window = np.hamming(2 * self.source_cache_len) | |
def token2wav(self, token, uuid, prompt_token=torch.zeros(1, 0, dtype=torch.int32), | |
prompt_feat=torch.zeros(1, 0, 80), embedding=torch.zeros(1, 192), finalize=False): | |
tts_mel = self.flow.inference(token=token.to(self.device), | |
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device), | |
prompt_token=prompt_token.to(self.device), | |
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to( | |
self.device), | |
prompt_feat=prompt_feat.to(self.device), | |
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to( | |
self.device), | |
embedding=embedding.to(self.device)) | |
# mel overlap fade in out | |
if self.mel_overlap_dict[uuid] is not None: | |
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window) | |
# append hift cache | |
if self.hift_cache_dict[uuid] is not None: | |
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source'] | |
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2) | |
else: | |
hift_cache_source = torch.zeros(1, 1, 0) | |
# _tts_mel=tts_mel.contiguous() | |
# keep overlap mel and hift cache | |
if finalize is False: | |
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:] | |
tts_mel = tts_mel[:, :, :-self.mel_overlap_len] | |
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source) | |
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:], | |
'source': tts_source[:, :, -self.source_cache_len:], | |
'speech': tts_speech[:, -self.source_cache_len:]} | |
# if self.hift_cache_dict[uuid] is not None: | |
# tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) | |
tts_speech = tts_speech[:, :-self.source_cache_len] | |
else: | |
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source) | |
del self.hift_cache_dict[uuid] | |
del self.mel_overlap_dict[uuid] | |
# if uuid in self.hift_cache_dict.keys() and self.hift_cache_dict[uuid] is not None: | |
# tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window) | |
return tts_speech, tts_mel | |
def offline_inference(self, token): | |
this_uuid = str(uuid.uuid1()) | |
tts_speech, tts_mel = self.token2wav(token, uuid=this_uuid, finalize=True) | |
return tts_speech.cpu() | |
def stream_inference(self, token): | |
token.to(self.device) | |
this_uuid = str(uuid.uuid1()) | |
# Prepare other necessary input tensors | |
llm_embedding = torch.zeros(1, 192).to(self.device) | |
prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device) | |
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32).to(self.device) | |
tts_speechs = [] | |
tts_mels = [] | |
block_size = self.flow.encoder.block_size | |
prev_mel = None | |
for idx in range(0, token.size(1), block_size): | |
# if idx>block_size: break | |
tts_token = token[:, idx:idx + block_size] | |
print(tts_token.size()) | |
if prev_mel is not None: | |
prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2) | |
flow_prompt_speech_token = token[:, :idx] | |
if idx + block_size >= token.size(-1): | |
is_finalize = True | |
else: | |
is_finalize = False | |
tts_speech, tts_mel = self.token2wav(tts_token, uuid=this_uuid, | |
prompt_token=flow_prompt_speech_token.to(self.device), | |
prompt_feat=prompt_speech_feat.to(self.device), finalize=is_finalize) | |
prev_mel = tts_mel | |
prev_speech = tts_speech | |
print(tts_mel.size()) | |
tts_speechs.append(tts_speech) | |
tts_mels.append(tts_mel) | |
# Convert Mel spectrogram to audio using HiFi-GAN | |
tts_speech = torch.cat(tts_speechs, dim=-1).cpu() | |
return tts_speech.cpu() | |