Spaces:
Runtime error
Runtime error
File size: 6,500 Bytes
f631117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import torch
import torchaudio
import numpy as np
import re
from hyperpyyaml import load_hyperpyyaml
import uuid
from collections import defaultdict
def fade_in_out(fade_in_mel, fade_out_mel, window):
device = fade_in_mel.device
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
mel_overlap_len = int(window.shape[0] / 2)
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
return fade_in_mel.to(device)
class AudioDecoder:
def __init__(self, config_path, flow_ckpt_path, hift_ckpt_path, device="cuda"):
self.device = device
with open(config_path, 'r') as f:
self.scratch_configs = load_hyperpyyaml(f)
# Load models
self.flow = self.scratch_configs['flow']
self.flow.load_state_dict(torch.load(flow_ckpt_path, map_location=self.device))
self.hift = self.scratch_configs['hift']
self.hift.load_state_dict(torch.load(hift_ckpt_path, map_location=self.device))
# Move models to the appropriate device
self.flow.to(self.device)
self.hift.to(self.device)
self.mel_overlap_dict = defaultdict(lambda: None)
self.hift_cache_dict = defaultdict(lambda: None)
self.token_min_hop_len = 2 * self.flow.input_frame_rate
self.token_max_hop_len = 4 * self.flow.input_frame_rate
self.token_overlap_len = 5
self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
self.mel_window = np.hamming(2 * self.mel_overlap_len)
# hift cache
self.mel_cache_len = 1
self.source_cache_len = int(self.mel_cache_len * 256)
# speech fade in out
self.speech_window = np.hamming(2 * self.source_cache_len)
def token2wav(self, token, uuid, prompt_token=torch.zeros(1, 0, dtype=torch.int32),
prompt_feat=torch.zeros(1, 0, 80), embedding=torch.zeros(1, 192), finalize=False):
tts_mel = self.flow.inference(token=token.to(self.device),
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
prompt_token=prompt_token.to(self.device),
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(
self.device),
prompt_feat=prompt_feat.to(self.device),
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(
self.device),
embedding=embedding.to(self.device))
# mel overlap fade in out
if self.mel_overlap_dict[uuid] is not None:
tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
# append hift cache
if self.hift_cache_dict[uuid] is not None:
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
else:
hift_cache_source = torch.zeros(1, 1, 0)
# _tts_mel=tts_mel.contiguous()
# keep overlap mel and hift cache
if finalize is False:
self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
'source': tts_source[:, :, -self.source_cache_len:],
'speech': tts_speech[:, -self.source_cache_len:]}
# if self.hift_cache_dict[uuid] is not None:
# tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
tts_speech = tts_speech[:, :-self.source_cache_len]
else:
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
del self.hift_cache_dict[uuid]
del self.mel_overlap_dict[uuid]
# if uuid in self.hift_cache_dict.keys() and self.hift_cache_dict[uuid] is not None:
# tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
return tts_speech, tts_mel
def offline_inference(self, token):
this_uuid = str(uuid.uuid1())
tts_speech, tts_mel = self.token2wav(token, uuid=this_uuid, finalize=True)
return tts_speech.cpu()
def stream_inference(self, token):
token.to(self.device)
this_uuid = str(uuid.uuid1())
# Prepare other necessary input tensors
llm_embedding = torch.zeros(1, 192).to(self.device)
prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device)
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32).to(self.device)
tts_speechs = []
tts_mels = []
block_size = self.flow.encoder.block_size
prev_mel = None
for idx in range(0, token.size(1), block_size):
# if idx>block_size: break
tts_token = token[:, idx:idx + block_size]
print(tts_token.size())
if prev_mel is not None:
prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)
flow_prompt_speech_token = token[:, :idx]
if idx + block_size >= token.size(-1):
is_finalize = True
else:
is_finalize = False
tts_speech, tts_mel = self.token2wav(tts_token, uuid=this_uuid,
prompt_token=flow_prompt_speech_token.to(self.device),
prompt_feat=prompt_speech_feat.to(self.device), finalize=is_finalize)
prev_mel = tts_mel
prev_speech = tts_speech
print(tts_mel.size())
tts_speechs.append(tts_speech)
tts_mels.append(tts_mel)
# Convert Mel spectrogram to audio using HiFi-GAN
tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
return tts_speech.cpu()
|