File size: 6,500 Bytes
f631117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torchaudio
import numpy as np
import re
from hyperpyyaml import load_hyperpyyaml
import uuid
from collections import defaultdict


def fade_in_out(fade_in_mel, fade_out_mel, window):
    device = fade_in_mel.device
    fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
    mel_overlap_len = int(window.shape[0] / 2)
    fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
                                         fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
    return fade_in_mel.to(device)


class AudioDecoder:
    def __init__(self, config_path, flow_ckpt_path, hift_ckpt_path, device="cuda"):
        self.device = device

        with open(config_path, 'r') as f:
            self.scratch_configs = load_hyperpyyaml(f)

        # Load models
        self.flow = self.scratch_configs['flow']
        self.flow.load_state_dict(torch.load(flow_ckpt_path, map_location=self.device))
        self.hift = self.scratch_configs['hift']
        self.hift.load_state_dict(torch.load(hift_ckpt_path, map_location=self.device))

        # Move models to the appropriate device
        self.flow.to(self.device)
        self.hift.to(self.device)
        self.mel_overlap_dict = defaultdict(lambda: None)
        self.hift_cache_dict = defaultdict(lambda: None)
        self.token_min_hop_len = 2 * self.flow.input_frame_rate
        self.token_max_hop_len = 4 * self.flow.input_frame_rate
        self.token_overlap_len = 5
        self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
        self.mel_window = np.hamming(2 * self.mel_overlap_len)
        # hift cache
        self.mel_cache_len = 1
        self.source_cache_len = int(self.mel_cache_len * 256)
        # speech fade in out
        self.speech_window = np.hamming(2 * self.source_cache_len)

    def token2wav(self, token, uuid, prompt_token=torch.zeros(1, 0, dtype=torch.int32),
                  prompt_feat=torch.zeros(1, 0, 80), embedding=torch.zeros(1, 192), finalize=False):
        tts_mel = self.flow.inference(token=token.to(self.device),
                                      token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
                                      prompt_token=prompt_token.to(self.device),
                                      prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(
                                          self.device),
                                      prompt_feat=prompt_feat.to(self.device),
                                      prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(
                                          self.device),
                                      embedding=embedding.to(self.device))

        # mel overlap fade in out
        if self.mel_overlap_dict[uuid] is not None:
            tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
        # append hift cache
        if self.hift_cache_dict[uuid] is not None:
            hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
            tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)

        else:
            hift_cache_source = torch.zeros(1, 1, 0)
        # _tts_mel=tts_mel.contiguous()
        # keep overlap mel and hift cache
        if finalize is False:
            self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
            tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
            tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)

            self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
                                          'source': tts_source[:, :, -self.source_cache_len:],
                                          'speech': tts_speech[:, -self.source_cache_len:]}
            # if self.hift_cache_dict[uuid] is not None:
            #     tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
            tts_speech = tts_speech[:, :-self.source_cache_len]

        else:
            tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
            del self.hift_cache_dict[uuid]
            del self.mel_overlap_dict[uuid]
            # if uuid in self.hift_cache_dict.keys() and self.hift_cache_dict[uuid] is not None:
            #     tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
        return tts_speech, tts_mel

    def offline_inference(self, token):
        this_uuid = str(uuid.uuid1())
        tts_speech, tts_mel = self.token2wav(token, uuid=this_uuid, finalize=True)
        return tts_speech.cpu()

    def stream_inference(self, token):
        token.to(self.device)
        this_uuid = str(uuid.uuid1())

        # Prepare other necessary input tensors
        llm_embedding = torch.zeros(1, 192).to(self.device)
        prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device)
        flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32).to(self.device)

        tts_speechs = []
        tts_mels = []

        block_size = self.flow.encoder.block_size
        prev_mel = None

        for idx in range(0, token.size(1), block_size):
            # if idx>block_size: break
            tts_token = token[:, idx:idx + block_size]

            print(tts_token.size())

            if prev_mel is not None:
                prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)
                flow_prompt_speech_token = token[:, :idx]

            if idx + block_size >= token.size(-1):
                is_finalize = True
            else:
                is_finalize = False

            tts_speech, tts_mel = self.token2wav(tts_token, uuid=this_uuid,
                                                 prompt_token=flow_prompt_speech_token.to(self.device),
                                                 prompt_feat=prompt_speech_feat.to(self.device), finalize=is_finalize)

            prev_mel = tts_mel
            prev_speech = tts_speech
            print(tts_mel.size())

            tts_speechs.append(tts_speech)
            tts_mels.append(tts_mel)

        # Convert Mel spectrogram to audio using HiFi-GAN
        tts_speech = torch.cat(tts_speechs, dim=-1).cpu()

        return tts_speech.cpu()