MimicBrush / data_utils.py
xichenhku's picture
Upload 162 files
81d8e7c verified
raw
history blame contribute delete
No virus
16.5 kB
import numpy as np
import torch
import cv2
import random
from PIL import Image
def gaussian_blure(img, intens = 5):
"""
高斯模糊
:param image_path:
:intens 5,10,15,20
:return:
"""
img = np.array(img).astype(np.uint8)
result = cv2.GaussianBlur(img, (0, 0), intens)
result = Image.fromarray(result)
return result
def random_mask(mask):
h,w = mask.shape[0], mask.shape[1]
mask_black = np.zeros_like(mask)
box_w = random.uniform(0.4, 0.9) * w
box_h = random.uniform(0.4, 0.9) * h
box_w = int(box_w)
box_h = int(box_h)
y1 = random.randint(0, h - box_h)
y2 = y1 + box_h
x1 = random.randint(0, w - box_w)
x2 = x1 + box_w
mask_black[y1:y2,x1:x2] = 1
mask_black = mask_black.astype(np.uint8)
return mask_black
'''
def random_mask_grid(mask, p=0.50):
# 创建一个 h x w 的全零数组,作为初始掩膜
h,w = mask.shape[0],mask.shape[1]
mask = np.zeros((h, w), dtype=np.uint8)
n = random.choice([3,4,5,6,7,8,9,10])
# 计算小块的大小
block_h = h // n
block_w = w // n
# 在每个小块中以概率 p 设置为 1
for i in range(n):
for j in range(n):
if np.random.rand() < p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
return mask
'''
def get_SIFT(image):
orb = cv2.ORB_create(nfeatures=200, edgeThreshold=50)
keypoint, descriptor = orb.detectAndCompute(image, None)
coordinates = [(int(kp.pt[1]), int(kp.pt[0])) for kp in keypoint]
return coordinates
'''
def random_mask_grid(mask, points_list, p=0.0):
# 创建一个 h x w 的全零数组,作为初始掩膜
h, w = mask.shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
n = random.choice([3,4,5,6,7,8,9,10])
# 计算小块的大小
block_h = h // n
block_w = w // n
# 统计每个小块内的点个数
block_counts = np.zeros((n, n), dtype=np.int32)
for point in points_list:
y, x = point
i = min(y // block_h, n-1)
j = min(x // block_w, n-1)
block_counts[i, j] += 1
# 找出包含点最多的前5个小块
top5_blocks = np.argpartition(-block_counts.flatten(), 5)[:5]
# 将这些小块对应的像素设为1
for idx in top5_blocks:
i, j = divmod(idx, n)
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
# 在其他小块中按照概率p设置为1
for i in range(n):
for j in range(n):
if (i*n + j) not in top5_blocks and np.random.rand() < p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
return mask
'''
def random_mask_grid(mask, points_list, p=0.50, top5_p=0.70, other_p=0.30):
# 创建一个 h x w 的全零数组,作为初始掩膜
h, w = mask.shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
n = random.choice([3,4,5,6,7,8,9,10])
# 计算小块的大小
block_h = h // n
block_w = w // n
# 统计每个小块内的点个数
block_counts = np.zeros((n, n), dtype=np.int32)
for point in points_list:
y, x = point
i = min(y // block_h, n-1)
j = min(x // block_w, n-1)
block_counts[i, j] += 1
# 找出包含点最多的前5个小块
top5_blocks = np.argpartition(-block_counts.flatten(), 5)[:5]
# 将这些小块对应的像素设为1
for idx in top5_blocks:
i, j = divmod(idx, n)
if np.random.rand() < top5_p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
# 在其他小块中按照概率p设置为1
for i in range(n):
for j in range(n):
if (i*n + j) not in top5_blocks and np.random.rand() < other_p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
return mask
def random_perspective_transform(image, intensity):
"""
对图像进行随机透视变换
参数:
image: 要进行变换的输入图像
intensity: 变换的强度,范围从0到1,值越大,变换越明显
返回值:
变换后的图像
"""
height, width = image.shape[:2]
# 生成随机透视变换的四个目标点
x_offset = width * 0.4 * intensity
y_offset = height * 0.4 * intensity
dst_points = np.float32([[random.uniform(-x_offset, x_offset), random.uniform(-y_offset, y_offset)],
[width - random.uniform(-x_offset, x_offset), random.uniform(-y_offset, y_offset)],
[random.uniform(-x_offset, x_offset), height - random.uniform(-y_offset, y_offset)],
[width - random.uniform(-x_offset, x_offset), height - random.uniform(-y_offset, y_offset)]])
# 对应的源点是图像的四个角
src_points = np.float32([[0, 0], [width, 0], [0, height], [width, height]])
# 生成透视变换矩阵
M = cv2.getPerspectiveTransform(src_points, dst_points)
# 进行透视变换
transformed_image = cv2.warpPerspective(image, M, (width, height))
mask = np.ones_like(transformed_image)
transformed_mask = cv2.warpPerspective(mask, M, (width, height))> 0.5
kernel_size = 5
kernel = np.ones((kernel_size, kernel_size), np.uint8)
transformed_mask = cv2.erode(transformed_mask.astype(np.uint8), kernel, iterations=1).astype(np.uint8)
white_back = np.ones_like(transformed_image) * 255
transformed_image = transformed_image * transformed_mask + white_back * (1-transformed_mask)
return transformed_image
def mask_score(mask):
'''Scoring the mask according to connectivity.'''
mask = mask.astype(np.uint8)
if mask.sum() < 10:
return 0
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnt_area = [cv2.contourArea(cnt) for cnt in contours]
conc_score = np.max(cnt_area) / sum(cnt_area)
return conc_score
def sobel(img, mask, thresh = 50):
'''Calculating the high-frequency map.'''
H,W = img.shape[0], img.shape[1]
img = cv2.resize(img,(256,256))
mask = (cv2.resize(mask,(256,256)) > 0.5).astype(np.uint8)
kernel = np.ones((5,5),np.uint8)
mask = cv2.erode(mask, kernel, iterations = 2)
Ksize = 3
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize)
sobel_X = cv2.convertScaleAbs(sobelx)
sobel_Y = cv2.convertScaleAbs(sobely)
scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0)
scharr = np.max(scharr,-1) * mask
scharr[scharr < thresh] = 0.0
scharr = np.stack([scharr,scharr,scharr],-1)
scharr = (scharr.astype(np.float32)/255 * img.astype(np.float32) ).astype(np.uint8)
scharr = cv2.resize(scharr,(W,H))
return scharr
def resize_and_pad(image, box):
'''Fitting an image to the box region while keeping the aspect ratio.'''
y1,y2,x1,x2 = box
H,W = y2-y1, x2-x1
h,w = image.shape[0], image.shape[1]
r_box = W / H
r_image = w / h
if r_box >= r_image:
h_target = H
w_target = int(w * H / h)
image = cv2.resize(image, (w_target, h_target))
w1 = (W - w_target) // 2
w2 = W - w_target - w1
pad_param = ((0,0),(w1,w2),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=255)
else:
w_target = W
h_target = int(h * W / w)
image = cv2.resize(image, (w_target, h_target))
h1 = (H-h_target) // 2
h2 = H - h_target - h1
pad_param =((h1,h2),(0,0),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=255)
return image
def expand_image_mask(image, mask, ratio=1.4, random = False):
# expand image and mask
# pad image with 255
# pad mask with 0
h,w = image.shape[0], image.shape[1]
H,W = int(h * ratio), int(w * ratio)
if random:
h1 = np.random.randint(0, int(H - h))
w1 = np.random.randint(0, int(W - w))
else:
h1 = int((H - h) // 2)
w1 = int((W -w) // 2)
h2 = H - h - h1
w2 = W -w - w1
pad_param_image = ((h1,h2),(w1,w2),(0,0))
pad_param_mask = ((h1,h2),(w1,w2))
image = np.pad(image, pad_param_image, 'constant', constant_values=255)
mask = np.pad(mask, pad_param_mask, 'constant', constant_values=0)
return image, mask
def resize_box(yyxx, H,W,h,w):
y1,y2,x1,x2 = yyxx
y1,y2 = int(y1/H * h), int(y2/H * h)
x1,x2 = int(x1/W * w), int(x2/W * w)
y1,y2 = min(y1,h), min(y2,h)
x1,x2 = min(x1,w), min(x2,w)
return (y1,y2,x1,x2)
def get_bbox_from_mask(mask):
h,w = mask.shape[0],mask.shape[1]
if mask.sum() < 10:
return 0,h,0,w
rows = np.any(mask,axis=1)
cols = np.any(mask,axis=0)
y1,y2 = np.where(rows)[0][[0,-1]]
x1,x2 = np.where(cols)[0][[0,-1]]
return (y1,y2,x1,x2)
def expand_bbox(mask,yyxx,ratio=[1.2,2.0], min_crop=0):
y1,y2,x1,x2 = yyxx
ratio = np.random.randint( ratio[0] * 10, ratio[1] * 10 ) / 10
H,W = mask.shape[0], mask.shape[1]
xc, yc = 0.5 * (x1 + x2), 0.5 * (y1 + y2)
h = ratio * (y2-y1+1)
w = ratio * (x2-x1+1)
h = max(h,min_crop)
w = max(w,min_crop)
x1 = int(xc - w * 0.5)
x2 = int(xc + w * 0.5)
y1 = int(yc - h * 0.5)
y2 = int(yc + h * 0.5)
x1 = max(0,x1)
x2 = min(W,x2)
y1 = max(0,y1)
y2 = min(H,y2)
return (y1,y2,x1,x2)
def box2squre(image, box):
H,W = image.shape[0], image.shape[1]
y1,y2,x1,x2 = box
cx = (x1 + x2) // 2
cy = (y1 + y2) // 2
h,w = y2-y1, x2-x1
if h >= w:
x1 = cx - h//2
x2 = cx + h//2
else:
y1 = cy - w//2
y2 = cy + w//2
x1 = max(0,x1)
x2 = min(W,x2)
y1 = max(0,y1)
y2 = min(H,y2)
return (y1,y2,x1,x2)
def pad_to_square(image, pad_value = 255, random = False):
H,W = image.shape[0], image.shape[1]
if H == W:
return image
padd = abs(H - W)
if random:
padd_1 = int(np.random.randint(0,padd))
else:
padd_1 = int(padd / 2)
padd_2 = padd - padd_1
if H > W:
pad_param = ((0,0),(padd_1,padd_2),(0,0))
else:
pad_param = ((padd_1,padd_2),(0,0),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=pad_value)
return image
def box_in_box(small_box, big_box):
y1,y2,x1,x2 = small_box
y1_b, _, x1_b, _ = big_box
y1,y2,x1,x2 = y1 - y1_b ,y2 - y1_b, x1 - x1_b ,x2 - x1_b
return (y1,y2,x1,x2 )
def shuffle_image(image, N):
height, width = image.shape[:2]
block_height = height // N
block_width = width // N
blocks = []
for i in range(N):
for j in range(N):
block = image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width]
blocks.append(block)
np.random.shuffle(blocks)
shuffled_image = np.zeros((height, width, 3), dtype=np.uint8)
for i in range(N):
for j in range(N):
shuffled_image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = blocks[i*N+j]
return shuffled_image
def get_mosaic_mask(image, fg_mask, N=16, ratio = 0.5):
ids = [i for i in range(N * N)]
masked_number = int(N * N * ratio)
masked_id = np.random.choice(ids, masked_number, replace=False)
height, width = image.shape[:2]
mask = np.ones((height, width))
block_height = height // N
block_width = width // N
b_id = 0
for i in range(N):
for j in range(N):
if b_id in masked_id:
mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] * 0
b_id += 1
mask = mask * fg_mask
mask3 = np.stack([mask,mask,mask],-1).copy().astype(np.uint8)
noise = q_x(image)
noise_mask = image * mask3 + noise * (1-mask3)
return noise_mask
def extract_canney_noise(image, mask, dilate=True):
h,w = image.shape[0],image.shape[1]
mask = cv2.resize(mask.astype(np.uint8),(w,h)) > 0.5
kernel = np.ones((8, 8), dtype=np.uint8)
mask = cv2.erode(mask.astype(np.uint8), kernel, 10)
canny = cv2.Canny(image, 50,100) * mask
kernel = np.ones((8, 8), dtype=np.uint8)
mask = (cv2.dilate(canny, kernel, 5) > 128).astype(np.uint8)
mask = np.stack([mask,mask,mask],-1)
pure_noise = q_x(image, t=1) * 0 + 255
canny_noise = mask * image + (1-mask) * pure_noise
return canny_noise
def get_random_structure(size):
choice = np.random.randint(1, 5)
if choice == 1:
return cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
elif choice == 2:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size))
elif choice == 3:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size//2))
elif choice == 4:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size//2, size))
def random_dilate(seg, min=3, max=10):
size = np.random.randint(min, max)
kernel = get_random_structure(size)
seg = cv2.dilate(seg,kernel,iterations = 1)
return seg
def random_erode(seg, min=3, max=10):
size = np.random.randint(min, max)
kernel = get_random_structure(size)
seg = cv2.erode(seg,kernel,iterations = 1)
return seg
def compute_iou(seg, gt):
intersection = seg*gt
union = seg+gt
return (np.count_nonzero(intersection) + 1e-6) / (np.count_nonzero(union) + 1e-6)
def select_max_region(mask):
nums, labels, stats, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8)
background = 0
for row in range(stats.shape[0]):
if stats[row, :][0] == 0 and stats[row, :][1] == 0:
background = row
stats_no_bg = np.delete(stats, background, axis=0)
max_idx = stats_no_bg[:, 4].argmax()
max_region = np.where(labels==max_idx+1, 1, 0)
return max_region.astype(np.uint8)
def perturb_mask(gt, min_iou = 0.3, max_iou = 0.99):
iou_target = np.random.uniform(min_iou, max_iou)
h, w = gt.shape
gt = gt.astype(np.uint8)
seg = gt.copy()
# Rare case
if h <= 2 or w <= 2:
print('GT too small, returning original')
return seg
# Do a bunch of random operations
for _ in range(250):
for _ in range(4):
lx, ly = np.random.randint(w), np.random.randint(h)
lw, lh = np.random.randint(lx+1,w+1), np.random.randint(ly+1,h+1)
# Randomly set one pixel to 1/0. With the following dilate/erode, we can create holes/external regions
if np.random.rand() < 0.1:
cx = int((lx + lw) / 2)
cy = int((ly + lh) / 2)
seg[cy, cx] = np.random.randint(2) * 255
# Dilate/erode
if np.random.rand() < 0.5:
seg[ly:lh, lx:lw] = random_dilate(seg[ly:lh, lx:lw])
else:
seg[ly:lh, lx:lw] = random_erode(seg[ly:lh, lx:lw])
seg = np.logical_or(seg, gt).astype(np.uint8)
#seg = select_max_region(seg)
if compute_iou(seg, gt) < iou_target:
break
seg = select_max_region(seg.astype(np.uint8))
return seg.astype(np.uint8)
def q_x(x_0,t=65):
'''Adding noise for and given image.'''
x_0 = torch.from_numpy(x_0).float() / 127.5 - 1
num_steps = 100
betas = torch.linspace(-6,6,num_steps)
betas = torch.sigmoid(betas)*(0.5e-2 - 1e-5)+1e-5
alphas = 1-betas
alphas_prod = torch.cumprod(alphas,0)
alphas_prod_p = torch.cat([torch.tensor([1]).float(),alphas_prod[:-1]],0)
alphas_bar_sqrt = torch.sqrt(alphas_prod)
one_minus_alphas_bar_log = torch.log(1 - alphas_prod)
one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod)
noise = torch.randn_like(x_0)
alphas_t = alphas_bar_sqrt[t]
alphas_1_m_t = one_minus_alphas_bar_sqrt[t]
return (alphas_t * x_0 + alphas_1_m_t * noise).numpy() * 127.5 + 127.5
def extract_target_boundary(img, target_mask):
Ksize = 3
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize)
# sobel-x
sobel_X = cv2.convertScaleAbs(sobelx)
# sobel-y
sobel_Y = cv2.convertScaleAbs(sobely)
# sobel-xy
scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0)
scharr = np.max(scharr,-1).astype(np.float32)/255
scharr = scharr * target_mask.astype(np.float32)
return scharr