Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,492 Bytes
81d8e7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
import numpy as np
import torch
import cv2
import random
from PIL import Image
def gaussian_blure(img, intens = 5):
"""
高斯模糊
:param image_path:
:intens 5,10,15,20
:return:
"""
img = np.array(img).astype(np.uint8)
result = cv2.GaussianBlur(img, (0, 0), intens)
result = Image.fromarray(result)
return result
def random_mask(mask):
h,w = mask.shape[0], mask.shape[1]
mask_black = np.zeros_like(mask)
box_w = random.uniform(0.4, 0.9) * w
box_h = random.uniform(0.4, 0.9) * h
box_w = int(box_w)
box_h = int(box_h)
y1 = random.randint(0, h - box_h)
y2 = y1 + box_h
x1 = random.randint(0, w - box_w)
x2 = x1 + box_w
mask_black[y1:y2,x1:x2] = 1
mask_black = mask_black.astype(np.uint8)
return mask_black
'''
def random_mask_grid(mask, p=0.50):
# 创建一个 h x w 的全零数组,作为初始掩膜
h,w = mask.shape[0],mask.shape[1]
mask = np.zeros((h, w), dtype=np.uint8)
n = random.choice([3,4,5,6,7,8,9,10])
# 计算小块的大小
block_h = h // n
block_w = w // n
# 在每个小块中以概率 p 设置为 1
for i in range(n):
for j in range(n):
if np.random.rand() < p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
return mask
'''
def get_SIFT(image):
orb = cv2.ORB_create(nfeatures=200, edgeThreshold=50)
keypoint, descriptor = orb.detectAndCompute(image, None)
coordinates = [(int(kp.pt[1]), int(kp.pt[0])) for kp in keypoint]
return coordinates
'''
def random_mask_grid(mask, points_list, p=0.0):
# 创建一个 h x w 的全零数组,作为初始掩膜
h, w = mask.shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
n = random.choice([3,4,5,6,7,8,9,10])
# 计算小块的大小
block_h = h // n
block_w = w // n
# 统计每个小块内的点个数
block_counts = np.zeros((n, n), dtype=np.int32)
for point in points_list:
y, x = point
i = min(y // block_h, n-1)
j = min(x // block_w, n-1)
block_counts[i, j] += 1
# 找出包含点最多的前5个小块
top5_blocks = np.argpartition(-block_counts.flatten(), 5)[:5]
# 将这些小块对应的像素设为1
for idx in top5_blocks:
i, j = divmod(idx, n)
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
# 在其他小块中按照概率p设置为1
for i in range(n):
for j in range(n):
if (i*n + j) not in top5_blocks and np.random.rand() < p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
return mask
'''
def random_mask_grid(mask, points_list, p=0.50, top5_p=0.70, other_p=0.30):
# 创建一个 h x w 的全零数组,作为初始掩膜
h, w = mask.shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
n = random.choice([3,4,5,6,7,8,9,10])
# 计算小块的大小
block_h = h // n
block_w = w // n
# 统计每个小块内的点个数
block_counts = np.zeros((n, n), dtype=np.int32)
for point in points_list:
y, x = point
i = min(y // block_h, n-1)
j = min(x // block_w, n-1)
block_counts[i, j] += 1
# 找出包含点最多的前5个小块
top5_blocks = np.argpartition(-block_counts.flatten(), 5)[:5]
# 将这些小块对应的像素设为1
for idx in top5_blocks:
i, j = divmod(idx, n)
if np.random.rand() < top5_p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
# 在其他小块中按照概率p设置为1
for i in range(n):
for j in range(n):
if (i*n + j) not in top5_blocks and np.random.rand() < other_p:
mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
return mask
def random_perspective_transform(image, intensity):
"""
对图像进行随机透视变换
参数:
image: 要进行变换的输入图像
intensity: 变换的强度,范围从0到1,值越大,变换越明显
返回值:
变换后的图像
"""
height, width = image.shape[:2]
# 生成随机透视变换的四个目标点
x_offset = width * 0.4 * intensity
y_offset = height * 0.4 * intensity
dst_points = np.float32([[random.uniform(-x_offset, x_offset), random.uniform(-y_offset, y_offset)],
[width - random.uniform(-x_offset, x_offset), random.uniform(-y_offset, y_offset)],
[random.uniform(-x_offset, x_offset), height - random.uniform(-y_offset, y_offset)],
[width - random.uniform(-x_offset, x_offset), height - random.uniform(-y_offset, y_offset)]])
# 对应的源点是图像的四个角
src_points = np.float32([[0, 0], [width, 0], [0, height], [width, height]])
# 生成透视变换矩阵
M = cv2.getPerspectiveTransform(src_points, dst_points)
# 进行透视变换
transformed_image = cv2.warpPerspective(image, M, (width, height))
mask = np.ones_like(transformed_image)
transformed_mask = cv2.warpPerspective(mask, M, (width, height))> 0.5
kernel_size = 5
kernel = np.ones((kernel_size, kernel_size), np.uint8)
transformed_mask = cv2.erode(transformed_mask.astype(np.uint8), kernel, iterations=1).astype(np.uint8)
white_back = np.ones_like(transformed_image) * 255
transformed_image = transformed_image * transformed_mask + white_back * (1-transformed_mask)
return transformed_image
def mask_score(mask):
'''Scoring the mask according to connectivity.'''
mask = mask.astype(np.uint8)
if mask.sum() < 10:
return 0
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnt_area = [cv2.contourArea(cnt) for cnt in contours]
conc_score = np.max(cnt_area) / sum(cnt_area)
return conc_score
def sobel(img, mask, thresh = 50):
'''Calculating the high-frequency map.'''
H,W = img.shape[0], img.shape[1]
img = cv2.resize(img,(256,256))
mask = (cv2.resize(mask,(256,256)) > 0.5).astype(np.uint8)
kernel = np.ones((5,5),np.uint8)
mask = cv2.erode(mask, kernel, iterations = 2)
Ksize = 3
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize)
sobel_X = cv2.convertScaleAbs(sobelx)
sobel_Y = cv2.convertScaleAbs(sobely)
scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0)
scharr = np.max(scharr,-1) * mask
scharr[scharr < thresh] = 0.0
scharr = np.stack([scharr,scharr,scharr],-1)
scharr = (scharr.astype(np.float32)/255 * img.astype(np.float32) ).astype(np.uint8)
scharr = cv2.resize(scharr,(W,H))
return scharr
def resize_and_pad(image, box):
'''Fitting an image to the box region while keeping the aspect ratio.'''
y1,y2,x1,x2 = box
H,W = y2-y1, x2-x1
h,w = image.shape[0], image.shape[1]
r_box = W / H
r_image = w / h
if r_box >= r_image:
h_target = H
w_target = int(w * H / h)
image = cv2.resize(image, (w_target, h_target))
w1 = (W - w_target) // 2
w2 = W - w_target - w1
pad_param = ((0,0),(w1,w2),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=255)
else:
w_target = W
h_target = int(h * W / w)
image = cv2.resize(image, (w_target, h_target))
h1 = (H-h_target) // 2
h2 = H - h_target - h1
pad_param =((h1,h2),(0,0),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=255)
return image
def expand_image_mask(image, mask, ratio=1.4, random = False):
# expand image and mask
# pad image with 255
# pad mask with 0
h,w = image.shape[0], image.shape[1]
H,W = int(h * ratio), int(w * ratio)
if random:
h1 = np.random.randint(0, int(H - h))
w1 = np.random.randint(0, int(W - w))
else:
h1 = int((H - h) // 2)
w1 = int((W -w) // 2)
h2 = H - h - h1
w2 = W -w - w1
pad_param_image = ((h1,h2),(w1,w2),(0,0))
pad_param_mask = ((h1,h2),(w1,w2))
image = np.pad(image, pad_param_image, 'constant', constant_values=255)
mask = np.pad(mask, pad_param_mask, 'constant', constant_values=0)
return image, mask
def resize_box(yyxx, H,W,h,w):
y1,y2,x1,x2 = yyxx
y1,y2 = int(y1/H * h), int(y2/H * h)
x1,x2 = int(x1/W * w), int(x2/W * w)
y1,y2 = min(y1,h), min(y2,h)
x1,x2 = min(x1,w), min(x2,w)
return (y1,y2,x1,x2)
def get_bbox_from_mask(mask):
h,w = mask.shape[0],mask.shape[1]
if mask.sum() < 10:
return 0,h,0,w
rows = np.any(mask,axis=1)
cols = np.any(mask,axis=0)
y1,y2 = np.where(rows)[0][[0,-1]]
x1,x2 = np.where(cols)[0][[0,-1]]
return (y1,y2,x1,x2)
def expand_bbox(mask,yyxx,ratio=[1.2,2.0], min_crop=0):
y1,y2,x1,x2 = yyxx
ratio = np.random.randint( ratio[0] * 10, ratio[1] * 10 ) / 10
H,W = mask.shape[0], mask.shape[1]
xc, yc = 0.5 * (x1 + x2), 0.5 * (y1 + y2)
h = ratio * (y2-y1+1)
w = ratio * (x2-x1+1)
h = max(h,min_crop)
w = max(w,min_crop)
x1 = int(xc - w * 0.5)
x2 = int(xc + w * 0.5)
y1 = int(yc - h * 0.5)
y2 = int(yc + h * 0.5)
x1 = max(0,x1)
x2 = min(W,x2)
y1 = max(0,y1)
y2 = min(H,y2)
return (y1,y2,x1,x2)
def box2squre(image, box):
H,W = image.shape[0], image.shape[1]
y1,y2,x1,x2 = box
cx = (x1 + x2) // 2
cy = (y1 + y2) // 2
h,w = y2-y1, x2-x1
if h >= w:
x1 = cx - h//2
x2 = cx + h//2
else:
y1 = cy - w//2
y2 = cy + w//2
x1 = max(0,x1)
x2 = min(W,x2)
y1 = max(0,y1)
y2 = min(H,y2)
return (y1,y2,x1,x2)
def pad_to_square(image, pad_value = 255, random = False):
H,W = image.shape[0], image.shape[1]
if H == W:
return image
padd = abs(H - W)
if random:
padd_1 = int(np.random.randint(0,padd))
else:
padd_1 = int(padd / 2)
padd_2 = padd - padd_1
if H > W:
pad_param = ((0,0),(padd_1,padd_2),(0,0))
else:
pad_param = ((padd_1,padd_2),(0,0),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=pad_value)
return image
def box_in_box(small_box, big_box):
y1,y2,x1,x2 = small_box
y1_b, _, x1_b, _ = big_box
y1,y2,x1,x2 = y1 - y1_b ,y2 - y1_b, x1 - x1_b ,x2 - x1_b
return (y1,y2,x1,x2 )
def shuffle_image(image, N):
height, width = image.shape[:2]
block_height = height // N
block_width = width // N
blocks = []
for i in range(N):
for j in range(N):
block = image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width]
blocks.append(block)
np.random.shuffle(blocks)
shuffled_image = np.zeros((height, width, 3), dtype=np.uint8)
for i in range(N):
for j in range(N):
shuffled_image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = blocks[i*N+j]
return shuffled_image
def get_mosaic_mask(image, fg_mask, N=16, ratio = 0.5):
ids = [i for i in range(N * N)]
masked_number = int(N * N * ratio)
masked_id = np.random.choice(ids, masked_number, replace=False)
height, width = image.shape[:2]
mask = np.ones((height, width))
block_height = height // N
block_width = width // N
b_id = 0
for i in range(N):
for j in range(N):
if b_id in masked_id:
mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] * 0
b_id += 1
mask = mask * fg_mask
mask3 = np.stack([mask,mask,mask],-1).copy().astype(np.uint8)
noise = q_x(image)
noise_mask = image * mask3 + noise * (1-mask3)
return noise_mask
def extract_canney_noise(image, mask, dilate=True):
h,w = image.shape[0],image.shape[1]
mask = cv2.resize(mask.astype(np.uint8),(w,h)) > 0.5
kernel = np.ones((8, 8), dtype=np.uint8)
mask = cv2.erode(mask.astype(np.uint8), kernel, 10)
canny = cv2.Canny(image, 50,100) * mask
kernel = np.ones((8, 8), dtype=np.uint8)
mask = (cv2.dilate(canny, kernel, 5) > 128).astype(np.uint8)
mask = np.stack([mask,mask,mask],-1)
pure_noise = q_x(image, t=1) * 0 + 255
canny_noise = mask * image + (1-mask) * pure_noise
return canny_noise
def get_random_structure(size):
choice = np.random.randint(1, 5)
if choice == 1:
return cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
elif choice == 2:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size))
elif choice == 3:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size//2))
elif choice == 4:
return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size//2, size))
def random_dilate(seg, min=3, max=10):
size = np.random.randint(min, max)
kernel = get_random_structure(size)
seg = cv2.dilate(seg,kernel,iterations = 1)
return seg
def random_erode(seg, min=3, max=10):
size = np.random.randint(min, max)
kernel = get_random_structure(size)
seg = cv2.erode(seg,kernel,iterations = 1)
return seg
def compute_iou(seg, gt):
intersection = seg*gt
union = seg+gt
return (np.count_nonzero(intersection) + 1e-6) / (np.count_nonzero(union) + 1e-6)
def select_max_region(mask):
nums, labels, stats, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8)
background = 0
for row in range(stats.shape[0]):
if stats[row, :][0] == 0 and stats[row, :][1] == 0:
background = row
stats_no_bg = np.delete(stats, background, axis=0)
max_idx = stats_no_bg[:, 4].argmax()
max_region = np.where(labels==max_idx+1, 1, 0)
return max_region.astype(np.uint8)
def perturb_mask(gt, min_iou = 0.3, max_iou = 0.99):
iou_target = np.random.uniform(min_iou, max_iou)
h, w = gt.shape
gt = gt.astype(np.uint8)
seg = gt.copy()
# Rare case
if h <= 2 or w <= 2:
print('GT too small, returning original')
return seg
# Do a bunch of random operations
for _ in range(250):
for _ in range(4):
lx, ly = np.random.randint(w), np.random.randint(h)
lw, lh = np.random.randint(lx+1,w+1), np.random.randint(ly+1,h+1)
# Randomly set one pixel to 1/0. With the following dilate/erode, we can create holes/external regions
if np.random.rand() < 0.1:
cx = int((lx + lw) / 2)
cy = int((ly + lh) / 2)
seg[cy, cx] = np.random.randint(2) * 255
# Dilate/erode
if np.random.rand() < 0.5:
seg[ly:lh, lx:lw] = random_dilate(seg[ly:lh, lx:lw])
else:
seg[ly:lh, lx:lw] = random_erode(seg[ly:lh, lx:lw])
seg = np.logical_or(seg, gt).astype(np.uint8)
#seg = select_max_region(seg)
if compute_iou(seg, gt) < iou_target:
break
seg = select_max_region(seg.astype(np.uint8))
return seg.astype(np.uint8)
def q_x(x_0,t=65):
'''Adding noise for and given image.'''
x_0 = torch.from_numpy(x_0).float() / 127.5 - 1
num_steps = 100
betas = torch.linspace(-6,6,num_steps)
betas = torch.sigmoid(betas)*(0.5e-2 - 1e-5)+1e-5
alphas = 1-betas
alphas_prod = torch.cumprod(alphas,0)
alphas_prod_p = torch.cat([torch.tensor([1]).float(),alphas_prod[:-1]],0)
alphas_bar_sqrt = torch.sqrt(alphas_prod)
one_minus_alphas_bar_log = torch.log(1 - alphas_prod)
one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod)
noise = torch.randn_like(x_0)
alphas_t = alphas_bar_sqrt[t]
alphas_1_m_t = one_minus_alphas_bar_sqrt[t]
return (alphas_t * x_0 + alphas_1_m_t * noise).numpy() * 127.5 + 127.5
def extract_target_boundary(img, target_mask):
Ksize = 3
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize)
# sobel-x
sobel_X = cv2.convertScaleAbs(sobelx)
# sobel-y
sobel_Y = cv2.convertScaleAbs(sobely)
# sobel-xy
scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0)
scharr = np.max(scharr,-1).astype(np.float32)/255
scharr = scharr * target_mask.astype(np.float32)
return scharr |