File size: 16,492 Bytes
81d8e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import numpy as np
import torch 
import cv2
import random
from PIL import Image


def gaussian_blure(img, intens = 5):
    """
    高斯模糊
    :param image_path:
    :intens 5,10,15,20
    :return:
    """
    img = np.array(img).astype(np.uint8)
    result = cv2.GaussianBlur(img, (0, 0), intens)
    result = Image.fromarray(result)
    return result

def random_mask(mask):
    h,w = mask.shape[0], mask.shape[1]
    mask_black = np.zeros_like(mask)
    box_w = random.uniform(0.4, 0.9) * w
    box_h = random.uniform(0.4, 0.9) * h
    box_w = int(box_w)
    box_h = int(box_h)
    y1 = random.randint(0, h - box_h)
    y2 = y1 + box_h
    x1 = random.randint(0, w - box_w)
    x2 = x1 + box_w
    mask_black[y1:y2,x1:x2] = 1
    mask_black = mask_black.astype(np.uint8)
    return mask_black

'''
def random_mask_grid(mask, p=0.50):
    # 创建一个 h x w 的全零数组,作为初始掩膜
    h,w = mask.shape[0],mask.shape[1]
    mask = np.zeros((h, w), dtype=np.uint8)
    n = random.choice([3,4,5,6,7,8,9,10])
    
    # 计算小块的大小
    block_h = h // n
    block_w = w // n
    
    # 在每个小块中以概率 p 设置为 1
    for i in range(n):
        for j in range(n):
            if np.random.rand() < p:
                mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
    return mask
'''

def get_SIFT(image):
    orb = cv2.ORB_create(nfeatures=200, edgeThreshold=50)
    keypoint, descriptor = orb.detectAndCompute(image, None)
    coordinates = [(int(kp.pt[1]), int(kp.pt[0])) for kp in keypoint]
    return coordinates


'''
def random_mask_grid(mask, points_list, p=0.0):
    # 创建一个 h x w 的全零数组,作为初始掩膜
    h, w = mask.shape[:2]
    mask = np.zeros((h, w), dtype=np.uint8)
    n = random.choice([3,4,5,6,7,8,9,10])
    
    # 计算小块的大小
    block_h = h // n
    block_w = w // n
    
    # 统计每个小块内的点个数
    block_counts = np.zeros((n, n), dtype=np.int32)
    for point in points_list:
        y, x = point
        i = min(y // block_h, n-1)
        j = min(x // block_w, n-1)
        block_counts[i, j] += 1
    
    # 找出包含点最多的前5个小块
    top5_blocks = np.argpartition(-block_counts.flatten(), 5)[:5]
    
    # 将这些小块对应的像素设为1
    for idx in top5_blocks:
        i, j = divmod(idx, n)
        mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
    
    # 在其他小块中按照概率p设置为1
    for i in range(n):
        for j in range(n):
            if (i*n + j) not in top5_blocks and np.random.rand() < p:
                mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
    
    return mask
'''

def random_mask_grid(mask, points_list, p=0.50, top5_p=0.70, other_p=0.30):
    # 创建一个 h x w 的全零数组,作为初始掩膜
    h, w = mask.shape[:2]
    mask = np.zeros((h, w), dtype=np.uint8)
    n = random.choice([3,4,5,6,7,8,9,10])
    
    # 计算小块的大小
    block_h = h // n
    block_w = w // n
    
    # 统计每个小块内的点个数
    block_counts = np.zeros((n, n), dtype=np.int32)
    for point in points_list:
        y, x = point
        i = min(y // block_h, n-1)
        j = min(x // block_w, n-1)
        block_counts[i, j] += 1
    
    # 找出包含点最多的前5个小块
    top5_blocks = np.argpartition(-block_counts.flatten(), 5)[:5]
    
    # 将这些小块对应的像素设为1
    for idx in top5_blocks:
        i, j = divmod(idx, n)
        if np.random.rand() < top5_p:
            mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
    
    # 在其他小块中按照概率p设置为1
    for i in range(n):
        for j in range(n):
            if (i*n + j) not in top5_blocks and np.random.rand() < other_p:
                mask[i*block_h:(i+1)*block_h, j*block_w:(j+1)*block_w] = 1
    
    return mask

def random_perspective_transform(image, intensity):
    """
    对图像进行随机透视变换

    参数:
    image: 要进行变换的输入图像
    intensity: 变换的强度,范围从0到1,值越大,变换越明显

    返回值:
    变换后的图像
    """
    height, width = image.shape[:2]

    # 生成随机透视变换的四个目标点
    x_offset = width * 0.4 * intensity
    y_offset = height * 0.4 * intensity
    dst_points = np.float32([[random.uniform(-x_offset, x_offset), random.uniform(-y_offset, y_offset)],
                             [width - random.uniform(-x_offset, x_offset), random.uniform(-y_offset, y_offset)],
                             [random.uniform(-x_offset, x_offset), height - random.uniform(-y_offset, y_offset)],
                             [width - random.uniform(-x_offset, x_offset), height - random.uniform(-y_offset, y_offset)]])

    # 对应的源点是图像的四个角
    src_points = np.float32([[0, 0], [width, 0], [0, height], [width, height]])

    # 生成透视变换矩阵
    M = cv2.getPerspectiveTransform(src_points, dst_points)

    # 进行透视变换
    transformed_image = cv2.warpPerspective(image, M, (width, height))
    mask = np.ones_like(transformed_image)
    transformed_mask = cv2.warpPerspective(mask, M, (width, height))> 0.5

    kernel_size = 5
    kernel = np.ones((kernel_size, kernel_size), np.uint8)
    transformed_mask = cv2.erode(transformed_mask.astype(np.uint8), kernel, iterations=1).astype(np.uint8)

    white_back = np.ones_like(transformed_image) * 255
    transformed_image = transformed_image * transformed_mask + white_back * (1-transformed_mask)
    return transformed_image




def mask_score(mask):
    '''Scoring the mask according to connectivity.'''
    mask = mask.astype(np.uint8)
    if mask.sum() < 10:
        return 0
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    cnt_area = [cv2.contourArea(cnt) for cnt in contours]
    conc_score = np.max(cnt_area) / sum(cnt_area)
    return conc_score


def sobel(img, mask, thresh = 50):
    '''Calculating the high-frequency map.'''
    H,W = img.shape[0], img.shape[1]
    img = cv2.resize(img,(256,256))
    mask = (cv2.resize(mask,(256,256)) > 0.5).astype(np.uint8)
    kernel = np.ones((5,5),np.uint8)
    mask = cv2.erode(mask, kernel, iterations = 2)
    
    Ksize = 3
    sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize)
    sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize)
    sobel_X = cv2.convertScaleAbs(sobelx)
    sobel_Y = cv2.convertScaleAbs(sobely)
    scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0)
    scharr = np.max(scharr,-1) * mask    
    
    scharr[scharr < thresh] = 0.0
    scharr = np.stack([scharr,scharr,scharr],-1)
    scharr = (scharr.astype(np.float32)/255 * img.astype(np.float32) ).astype(np.uint8)
    scharr = cv2.resize(scharr,(W,H))
    return scharr


def resize_and_pad(image, box):
    '''Fitting an image to the box region while keeping the aspect ratio.'''
    y1,y2,x1,x2 = box
    H,W = y2-y1, x2-x1
    h,w =  image.shape[0], image.shape[1]
    r_box = W / H 
    r_image = w / h
    if r_box >= r_image:
        h_target = H
        w_target = int(w * H / h) 
        image = cv2.resize(image, (w_target, h_target))

        w1 = (W - w_target) // 2
        w2 = W - w_target - w1
        pad_param = ((0,0),(w1,w2),(0,0))
        image = np.pad(image, pad_param, 'constant', constant_values=255)
    else:
        w_target = W 
        h_target = int(h * W / w)
        image = cv2.resize(image, (w_target, h_target))

        h1 = (H-h_target) // 2 
        h2 = H - h_target - h1
        pad_param =((h1,h2),(0,0),(0,0))
        image = np.pad(image, pad_param, 'constant', constant_values=255)
    return image



def expand_image_mask(image, mask, ratio=1.4, random = False):
    # expand image and mask 
    # pad image with 255 
    # pad mask with 0
    h,w = image.shape[0], image.shape[1]
    H,W = int(h * ratio), int(w * ratio) 
    if random:
        h1 = np.random.randint(0, int(H - h))
        w1 = np.random.randint(0, int(W - w)) 
    else:
        h1 = int((H - h) // 2)
        w1 = int((W -w) // 2)
    h2 = H - h - h1
    w2 = W -w - w1
    pad_param_image = ((h1,h2),(w1,w2),(0,0))
    pad_param_mask = ((h1,h2),(w1,w2))
    image = np.pad(image, pad_param_image, 'constant', constant_values=255)
    mask = np.pad(mask, pad_param_mask, 'constant', constant_values=0)
    return image, mask


def resize_box(yyxx, H,W,h,w):
    y1,y2,x1,x2 = yyxx
    y1,y2 = int(y1/H * h), int(y2/H * h)
    x1,x2 = int(x1/W * w), int(x2/W * w)
    y1,y2 = min(y1,h), min(y2,h)
    x1,x2 = min(x1,w), min(x2,w)
    return (y1,y2,x1,x2)


def get_bbox_from_mask(mask):
    h,w = mask.shape[0],mask.shape[1]

    if mask.sum() < 10:
        return 0,h,0,w
    rows = np.any(mask,axis=1)
    cols = np.any(mask,axis=0)
    y1,y2 = np.where(rows)[0][[0,-1]]
    x1,x2 = np.where(cols)[0][[0,-1]]
    return (y1,y2,x1,x2)


def expand_bbox(mask,yyxx,ratio=[1.2,2.0], min_crop=0):
    y1,y2,x1,x2 = yyxx
    ratio = np.random.randint( ratio[0] * 10,  ratio[1] * 10 ) / 10
    H,W = mask.shape[0], mask.shape[1]
    xc, yc = 0.5 * (x1 + x2), 0.5 * (y1 + y2)
    h = ratio * (y2-y1+1)
    w = ratio * (x2-x1+1)
    h = max(h,min_crop)
    w = max(w,min_crop)

    x1 = int(xc - w * 0.5)
    x2 = int(xc + w * 0.5)
    y1 = int(yc - h * 0.5)
    y2 = int(yc + h * 0.5)

    x1 = max(0,x1)
    x2 = min(W,x2)
    y1 = max(0,y1)
    y2 = min(H,y2)
    return (y1,y2,x1,x2)


def box2squre(image, box):
    H,W = image.shape[0], image.shape[1]
    y1,y2,x1,x2 = box
    cx = (x1 + x2) // 2
    cy = (y1 + y2) // 2
    h,w = y2-y1, x2-x1

    if h >= w:
        x1 = cx - h//2
        x2 = cx + h//2
    else:
        y1 = cy - w//2
        y2 = cy + w//2
    x1 = max(0,x1)
    x2 = min(W,x2)
    y1 = max(0,y1)
    y2 = min(H,y2)
    return (y1,y2,x1,x2)


def pad_to_square(image, pad_value = 255, random = False):
    H,W = image.shape[0], image.shape[1]
    if H == W:
        return image

    padd = abs(H - W)
    if random:
        padd_1 = int(np.random.randint(0,padd))
    else:
        padd_1 = int(padd / 2)
    padd_2 = padd - padd_1

    if H > W:
        pad_param = ((0,0),(padd_1,padd_2),(0,0))
    else:
        pad_param = ((padd_1,padd_2),(0,0),(0,0))

    image = np.pad(image, pad_param, 'constant', constant_values=pad_value)
    return image



def box_in_box(small_box, big_box):
    y1,y2,x1,x2 = small_box
    y1_b, _, x1_b, _ = big_box
    y1,y2,x1,x2 = y1 - y1_b ,y2 - y1_b, x1 - x1_b ,x2 - x1_b
    return (y1,y2,x1,x2 )



def shuffle_image(image, N):
    height, width = image.shape[:2]
    
    block_height = height // N
    block_width = width // N
    blocks = []
    
    for i in range(N):
        for j in range(N):
            block = image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width]
            blocks.append(block)
    
    np.random.shuffle(blocks)
    shuffled_image = np.zeros((height, width, 3), dtype=np.uint8)

    for i in range(N):
        for j in range(N):
            shuffled_image[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = blocks[i*N+j]
    return shuffled_image


def get_mosaic_mask(image, fg_mask, N=16, ratio = 0.5):
    ids = [i for i in range(N * N)]
    masked_number = int(N * N * ratio)
    masked_id = np.random.choice(ids, masked_number, replace=False)
    

    
    height, width = image.shape[:2]
    mask = np.ones((height, width))
    
    block_height = height // N
    block_width = width // N
    
    b_id = 0
    for i in range(N):
        for j in range(N):
            if b_id in masked_id:
                mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] = mask[i*block_height:(i+1)*block_height, j*block_width:(j+1)*block_width] * 0
            b_id += 1
    mask = mask * fg_mask
    mask3 = np.stack([mask,mask,mask],-1).copy().astype(np.uint8)
    noise = q_x(image)
    noise_mask = image * mask3 + noise * (1-mask3)
    return noise_mask

def extract_canney_noise(image, mask, dilate=True):
    h,w = image.shape[0],image.shape[1]
    mask = cv2.resize(mask.astype(np.uint8),(w,h)) > 0.5
    kernel = np.ones((8, 8), dtype=np.uint8)
    mask =  cv2.erode(mask.astype(np.uint8), kernel, 10)

    canny = cv2.Canny(image, 50,100) * mask
    kernel = np.ones((8, 8), dtype=np.uint8)
    mask = (cv2.dilate(canny, kernel, 5) > 128).astype(np.uint8)
    mask = np.stack([mask,mask,mask],-1)

    pure_noise = q_x(image, t=1) * 0 + 255
    canny_noise = mask * image + (1-mask) * pure_noise
    return canny_noise


def get_random_structure(size):
    choice = np.random.randint(1, 5)

    if choice == 1:
        return cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
    elif choice == 2:
        return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size))
    elif choice == 3:
        return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size//2))
    elif choice == 4:
        return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size//2, size))

def random_dilate(seg, min=3, max=10):
    size = np.random.randint(min, max)
    kernel = get_random_structure(size)
    seg = cv2.dilate(seg,kernel,iterations = 1)
    return seg

def random_erode(seg, min=3, max=10):
    size = np.random.randint(min, max)
    kernel = get_random_structure(size)
    seg = cv2.erode(seg,kernel,iterations = 1)
    return seg

def compute_iou(seg, gt):
    intersection = seg*gt
    union = seg+gt
    return (np.count_nonzero(intersection) + 1e-6) / (np.count_nonzero(union) + 1e-6)


def select_max_region(mask):
    nums, labels, stats, centroids = cv2.connectedComponentsWithStats(mask, connectivity=8)
    background = 0
    for row in range(stats.shape[0]):
        if stats[row, :][0] == 0 and stats[row, :][1] == 0:
            background = row
    stats_no_bg = np.delete(stats, background, axis=0)
    max_idx = stats_no_bg[:, 4].argmax()
    max_region = np.where(labels==max_idx+1, 1, 0)

    return max_region.astype(np.uint8)



def perturb_mask(gt, min_iou = 0.3,  max_iou = 0.99):
    iou_target = np.random.uniform(min_iou, max_iou)
    h, w = gt.shape
    gt = gt.astype(np.uint8)
    seg = gt.copy()
    
    # Rare case
    if h <= 2 or w <= 2:
        print('GT too small, returning original')
        return seg

    # Do a bunch of random operations
    for _ in range(250):
        for _ in range(4):
            lx, ly = np.random.randint(w), np.random.randint(h)
            lw, lh = np.random.randint(lx+1,w+1), np.random.randint(ly+1,h+1)

            # Randomly set one pixel to 1/0. With the following dilate/erode, we can create holes/external regions
            if np.random.rand() < 0.1:
                cx = int((lx + lw) / 2)
                cy = int((ly + lh) / 2)
                seg[cy, cx] = np.random.randint(2) * 255

            # Dilate/erode
            if np.random.rand() < 0.5:
                seg[ly:lh, lx:lw] = random_dilate(seg[ly:lh, lx:lw])
            else:
                seg[ly:lh, lx:lw] = random_erode(seg[ly:lh, lx:lw])
            
            seg = np.logical_or(seg, gt).astype(np.uint8)
            #seg = select_max_region(seg) 

        if compute_iou(seg, gt) < iou_target:
            break
    seg = select_max_region(seg.astype(np.uint8)) 
    return seg.astype(np.uint8)


def q_x(x_0,t=65):
    '''Adding noise for and given image.'''
    x_0 = torch.from_numpy(x_0).float() / 127.5 - 1
    num_steps = 100
    
    betas = torch.linspace(-6,6,num_steps)
    betas = torch.sigmoid(betas)*(0.5e-2 - 1e-5)+1e-5

    alphas = 1-betas
    alphas_prod = torch.cumprod(alphas,0)
    
    alphas_prod_p = torch.cat([torch.tensor([1]).float(),alphas_prod[:-1]],0)
    alphas_bar_sqrt = torch.sqrt(alphas_prod)
    one_minus_alphas_bar_log = torch.log(1 - alphas_prod)
    one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod)
    
    noise = torch.randn_like(x_0)
    alphas_t = alphas_bar_sqrt[t]
    alphas_1_m_t = one_minus_alphas_bar_sqrt[t]
    return (alphas_t * x_0 + alphas_1_m_t * noise).numpy()  * 127.5 + 127.5 


def extract_target_boundary(img, target_mask):
    Ksize = 3
    sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize)
    sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize)

    # sobel-x
    sobel_X = cv2.convertScaleAbs(sobelx)
    # sobel-y
    sobel_Y = cv2.convertScaleAbs(sobely)
    # sobel-xy
    scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0)
    scharr = np.max(scharr,-1).astype(np.float32)/255
    scharr = scharr *  target_mask.astype(np.float32)
    return scharr