machineuser
Sync widgets demo
ca548dc
# 🤗 Hugging Face Inference Endpoints
A Typescript powered wrapper for the Hugging Face Inference Endpoints API. Learn more about Inference Endpoints at [Hugging Face](https://huggingface.co/inference-endpoints).
It works with both [Inference API (serverless)](https://huggingface.co/docs/api-inference/index) and [Inference Endpoints (dedicated)](https://huggingface.co/docs/inference-endpoints/index).
Check out the [full documentation](https://huggingface.co/docs/huggingface.js/inference/README).
You can also try out a live [interactive notebook](https://observablehq.com/@huggingface/hello-huggingface-js-inference), see some demos on [hf.co/huggingfacejs](https://huggingface.co/huggingfacejs), or watch a [Scrimba tutorial that explains how Inference Endpoints works](https://scrimba.com/scrim/cod8248f5adfd6e129582c523).
## Getting Started
### Install
#### Node
```console
npm install @huggingface/inference
pnpm add @huggingface/inference
yarn add @huggingface/inference
```
#### Deno
```ts
// esm.sh
import { HfInference } from "https://esm.sh/@huggingface/inference"
// or npm:
import { HfInference } from "npm:@huggingface/inference"
```
### Initialize
```typescript
import { HfInference } from '@huggingface/inference'
const hf = new HfInference('your access token')
```
**Important note:** Using an access token is optional to get started, however you will be rate limited eventually. Join [Hugging Face](https://huggingface.co/join) and then visit [access tokens](https://huggingface.co/settings/tokens) to generate your access token for **free**.
Your access token should be kept private. If you need to protect it in front-end applications, we suggest setting up a proxy server that stores the access token.
#### Tree-shaking
You can import the functions you need directly from the module instead of using the `HfInference` class.
```ts
import { textGeneration } from "@huggingface/inference";
await textGeneration({
accessToken: "hf_...",
model: "model_or_endpoint",
inputs: ...,
parameters: ...
})
```
This will enable tree-shaking by your bundler.
## Natural Language Processing
### Fill Mask
Tries to fill in a hole with a missing word (token to be precise).
```typescript
await hf.fillMask({
model: 'bert-base-uncased',
inputs: '[MASK] world!'
})
```
### Summarization
Summarizes longer text into shorter text. Be careful, some models have a maximum length of input.
```typescript
await hf.summarization({
model: 'facebook/bart-large-cnn',
inputs:
'The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930.',
parameters: {
max_length: 100
}
})
```
### Question Answering
Answers questions based on the context you provide.
```typescript
await hf.questionAnswering({
model: 'deepset/roberta-base-squad2',
inputs: {
question: 'What is the capital of France?',
context: 'The capital of France is Paris.'
}
})
```
### Table Question Answering
```typescript
await hf.tableQuestionAnswering({
model: 'google/tapas-base-finetuned-wtq',
inputs: {
query: 'How many stars does the transformers repository have?',
table: {
Repository: ['Transformers', 'Datasets', 'Tokenizers'],
Stars: ['36542', '4512', '3934'],
Contributors: ['651', '77', '34'],
'Programming language': ['Python', 'Python', 'Rust, Python and NodeJS']
}
}
})
```
### Text Classification
Often used for sentiment analysis, this method will assign labels to the given text along with a probability score of that label.
```typescript
await hf.textClassification({
model: 'distilbert-base-uncased-finetuned-sst-2-english',
inputs: 'I like you. I love you.'
})
```
### Text Generation
Generates text from an input prompt.
[Demo](https://huggingface.co/spaces/huggingfacejs/streaming-text-generation)
```typescript
await hf.textGeneration({
model: 'gpt2',
inputs: 'The answer to the universe is'
})
for await (const output of hf.textGenerationStream({
model: "google/flan-t5-xxl",
inputs: 'repeat "one two three four"',
parameters: { max_new_tokens: 250 }
})) {
console.log(output.token.text, output.generated_text);
}
```
### Token Classification
Used for sentence parsing, either grammatical, or Named Entity Recognition (NER) to understand keywords contained within text.
```typescript
await hf.tokenClassification({
model: 'dbmdz/bert-large-cased-finetuned-conll03-english',
inputs: 'My name is Sarah Jessica Parker but you can call me Jessica'
})
```
### Translation
Converts text from one language to another.
```typescript
await hf.translation({
model: 't5-base',
inputs: 'My name is Wolfgang and I live in Berlin'
})
await hf.translation({
model: 'facebook/mbart-large-50-many-to-many-mmt',
inputs: textToTranslate,
parameters: {
"src_lang": "en_XX",
"tgt_lang": "fr_XX"
}
})
```
### Zero-Shot Classification
Checks how well an input text fits into a set of labels you provide.
```typescript
await hf.zeroShotClassification({
model: 'facebook/bart-large-mnli',
inputs: [
'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!'
],
parameters: { candidate_labels: ['refund', 'legal', 'faq'] }
})
```
### Conversational
This task corresponds to any chatbot-like structure. Models tend to have shorter max_length, so please check with caution when using a given model if you need long-range dependency or not.
```typescript
await hf.conversational({
model: 'microsoft/DialoGPT-large',
inputs: {
past_user_inputs: ['Which movie is the best ?'],
generated_responses: ['It is Die Hard for sure.'],
text: 'Can you explain why ?'
}
})
```
### Sentence Similarity
Calculate the semantic similarity between one text and a list of other sentences.
```typescript
await hf.sentenceSimilarity({
model: 'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
inputs: {
source_sentence: 'That is a happy person',
sentences: [
'That is a happy dog',
'That is a very happy person',
'Today is a sunny day'
]
}
})
```
## Audio
### Automatic Speech Recognition
Transcribes speech from an audio file.
[Demo](https://huggingface.co/spaces/huggingfacejs/speech-recognition-vue)
```typescript
await hf.automaticSpeechRecognition({
model: 'facebook/wav2vec2-large-960h-lv60-self',
data: readFileSync('test/sample1.flac')
})
```
### Audio Classification
Assigns labels to the given audio along with a probability score of that label.
[Demo](https://huggingface.co/spaces/huggingfacejs/audio-classification-vue)
```typescript
await hf.audioClassification({
model: 'superb/hubert-large-superb-er',
data: readFileSync('test/sample1.flac')
})
```
### Text To Speech
Generates natural-sounding speech from text input.
[Interactive tutorial](https://scrimba.com/scrim/co8da4d23b49b648f77f4848a?pl=pkVnrP7uP)
```typescript
await hf.textToSpeech({
model: 'espnet/kan-bayashi_ljspeech_vits',
inputs: 'Hello world!'
})
```
### Audio To Audio
Outputs one or multiple generated audios from an input audio, commonly used for speech enhancement and source separation.
```typescript
await hf.audioToAudio({
model: 'speechbrain/sepformer-wham',
data: readFileSync('test/sample1.flac')
})
```
## Computer Vision
### Image Classification
Assigns labels to a given image along with a probability score of that label.
[Demo](https://huggingface.co/spaces/huggingfacejs/image-classification-vue)
```typescript
await hf.imageClassification({
data: readFileSync('test/cheetah.png'),
model: 'google/vit-base-patch16-224'
})
```
### Object Detection
Detects objects within an image and returns labels with corresponding bounding boxes and probability scores.
[Demo](https://huggingface.co/spaces/huggingfacejs/object-detection-vue)
```typescript
await hf.objectDetection({
data: readFileSync('test/cats.png'),
model: 'facebook/detr-resnet-50'
})
```
### Image Segmentation
Detects segments within an image and returns labels with corresponding bounding boxes and probability scores.
```typescript
await hf.imageSegmentation({
data: readFileSync('test/cats.png'),
model: 'facebook/detr-resnet-50-panoptic'
})
```
### Image To Text
Outputs text from a given image, commonly used for captioning or optical character recognition.
```typescript
await hf.imageToText({
data: readFileSync('test/cats.png'),
model: 'nlpconnect/vit-gpt2-image-captioning'
})
```
### Text To Image
Creates an image from a text prompt.
[Demo](https://huggingface.co/spaces/huggingfacejs/image-to-text)
```typescript
await hf.textToImage({
inputs: 'award winning high resolution photo of a giant tortoise/((ladybird)) hybrid, [trending on artstation]',
model: 'stabilityai/stable-diffusion-2',
parameters: {
negative_prompt: 'blurry',
}
})
```
### Image To Image
Image-to-image is the task of transforming a source image to match the characteristics of a target image or a target image domain.
[Interactive tutorial](https://scrimba.com/scrim/co4834bf9a91cc81cfab07969?pl=pkVnrP7uP)
```typescript
await hf.imageToImage({
inputs: new Blob([readFileSync("test/stormtrooper_depth.png")]),
parameters: {
prompt: "elmo's lecture",
},
model: "lllyasviel/sd-controlnet-depth",
});
```
### Zero Shot Image Classification
Checks how well an input image fits into a set of labels you provide.
```typescript
await hf.zeroShotImageClassification({
model: 'openai/clip-vit-large-patch14-336',
inputs: {
image: await (await fetch('https://placekitten.com/300/300')).blob()
},
parameters: {
candidate_labels: ['cat', 'dog']
}
})
```
## Multimodal
### Feature Extraction
This task reads some text and outputs raw float values, that are usually consumed as part of a semantic database/semantic search.
```typescript
await hf.featureExtraction({
model: "sentence-transformers/distilbert-base-nli-mean-tokens",
inputs: "That is a happy person",
});
```
### Visual Question Answering
Visual Question Answering is the task of answering open-ended questions based on an image. They output natural language responses to natural language questions.
[Demo](https://huggingface.co/spaces/huggingfacejs/doc-vis-qa)
```typescript
await hf.visualQuestionAnswering({
model: 'dandelin/vilt-b32-finetuned-vqa',
inputs: {
question: 'How many cats are lying down?',
image: await (await fetch('https://placekitten.com/300/300')).blob()
}
})
```
### Document Question Answering
Document question answering models take a (document, question) pair as input and return an answer in natural language.
[Demo](https://huggingface.co/spaces/huggingfacejs/doc-vis-qa)
```typescript
await hf.documentQuestionAnswering({
model: 'impira/layoutlm-document-qa',
inputs: {
question: 'Invoice number?',
image: await (await fetch('https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png')).blob(),
}
})
```
## Tabular
### Tabular Regression
Tabular regression is the task of predicting a numerical value given a set of attributes.
```typescript
await hf.tabularRegression({
model: "scikit-learn/Fish-Weight",
inputs: {
data: {
"Height": ["11.52", "12.48", "12.3778"],
"Length1": ["23.2", "24", "23.9"],
"Length2": ["25.4", "26.3", "26.5"],
"Length3": ["30", "31.2", "31.1"],
"Species": ["Bream", "Bream", "Bream"],
"Width": ["4.02", "4.3056", "4.6961"]
},
},
})
```
### Tabular Classification
Tabular classification is the task of classifying a target category (a group) based on set of attributes.
```typescript
await hf.tabularClassification({
model: "vvmnnnkv/wine-quality",
inputs: {
data: {
"fixed_acidity": ["7.4", "7.8", "10.3"],
"volatile_acidity": ["0.7", "0.88", "0.32"],
"citric_acid": ["0", "0", "0.45"],
"residual_sugar": ["1.9", "2.6", "6.4"],
"chlorides": ["0.076", "0.098", "0.073"],
"free_sulfur_dioxide": ["11", "25", "5"],
"total_sulfur_dioxide": ["34", "67", "13"],
"density": ["0.9978", "0.9968", "0.9976"],
"pH": ["3.51", "3.2", "3.23"],
"sulphates": ["0.56", "0.68", "0.82"],
"alcohol": ["9.4", "9.8", "12.6"]
},
},
})
```
## Custom Calls
For models with custom parameters / outputs.
```typescript
await hf.request({
model: 'my-custom-model',
inputs: 'hello world',
parameters: {
custom_param: 'some magic',
}
})
// Custom streaming call, for models with custom parameters / outputs
for await (const output of hf.streamingRequest({
model: 'my-custom-model',
inputs: 'hello world',
parameters: {
custom_param: 'some magic',
}
})) {
...
}
```
## Custom Inference Endpoints
Learn more about using your own inference endpoints [here](https://hf.co/docs/inference-endpoints/)
```typescript
const gpt2 = hf.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2');
const { generated_text } = await gpt2.textGeneration({inputs: 'The answer to the universe is'});
```
By default, all calls to the inference endpoint will wait until the model is
loaded. When [scaling to
0](https://huggingface.co/docs/inference-endpoints/en/autoscaling#scaling-to-0)
is enabled on the endpoint, this can result in non-trivial waiting time. If
you'd rather disable this behavior and handle the endpoint's returned 500 HTTP
errors yourself, you can do so like so:
```typescript
const gpt2 = hf.endpoint('https://xyz.eu-west-1.aws.endpoints.huggingface.cloud/gpt2');
const { generated_text } = await gpt2.textGeneration(
{inputs: 'The answer to the universe is'},
{retry_on_error: false},
);
```
## Running tests
```console
HF_TOKEN="your access token" pnpm run test
```
## Finding appropriate models
We have an informative documentation project called [Tasks](https://huggingface.co/tasks) to list available models for each task and explain how each task works in detail.
It also contains demos, example outputs, and other resources should you want to dig deeper into the ML side of things.