MMOCR / docs /en /testing.md
tomofi's picture
Add application file
2366e36
|
raw
history blame
10.2 kB

Testing

We introduce the way to test pretrained models on datasets here.

Testing with Single GPU

You can use tools/test.py to perform single CPU/GPU inference. For example, to evaluate DBNet on IC15: (You can download pretrained models from Model Zoo):

./tools/dist_test.sh configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth --eval hmean-iou

And here is the full usage of the script:

python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]

:::{note} By default, MMOCR prefers GPU(s) to CPU. If you want to test a model on CPU, please empty CUDA_VISIBLE_DEVICES or set it to -1 to make GPU(s) invisible to the program. Note that running CPU tests requires MMCV >= 1.4.4.

CUDA_VISIBLE_DEVICES= python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [ARGS]

:::

ARGS Type Description
--out str Output result file in pickle format.
--fuse-conv-bn bool Path to the custom config of the selected det model.
--format-only bool Format the output results without performing evaluation. It is useful when you want to format the results to a specific format and submit them to the test server.
--gpu-id int GPU id to use. Only applicable to non-distributed training.
--eval 'hmean-ic13', 'hmean-iou', 'acc' The evaluation metrics, which depends on the task. For text detection, the metric should be either 'hmean-ic13' or 'hmean-iou'. For text recognition, the metric should be 'acc'.
--show bool Whether to show results.
--show-dir str Directory where the output images will be saved.
--show-score-thr float Score threshold (default: 0.3).
--gpu-collect bool Whether to use gpu to collect results.
--tmpdir str The tmp directory used for collecting results from multiple workers, available when gpu-collect is not specified.
--cfg-options str Override some settings in the used config, the key-value pair in xxx=yyy format will be merged into the config file. If the value to be overwritten is a list, it should be of the form of either key="[a,b]" or key=a,b. The argument also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks are necessary and that no white space is allowed.
--eval-options str Custom options for evaluation, the key-value pair in xxx=yyy format will be kwargs for dataset.evaluate() function.
--launcher 'none', 'pytorch', 'slurm', 'mpi' Options for job launcher.

Testing with Multiple GPUs

MMOCR implements distributed testing with MMDistributedDataParallel.

You can use the following command to test a dataset with multiple GPUs.

[PORT={PORT}] ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]
Arguments Type Description
PORT int The master port that will be used by the machine with rank 0. Defaults to 29500.
PY_ARGS str Arguments to be parsed by tools/test.py.

For example,

./tools/dist_test.sh configs/example_config.py work_dirs/example_exp/example_model_20200202.pth 1 --eval hmean-iou

Testing with Slurm

If you run MMOCR on a cluster managed with Slurm, you can use the script tools/slurm_test.sh.

[GPUS=${GPUS}] [GPUS_PER_NODE=${GPUS_PER_NODE}] [SRUN_ARGS=${SRUN_ARGS}] ./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${CHECKPOINT_FILE} [PY_ARGS]
Arguments Type Description
GPUS int The number of GPUs to be used by this task. Defaults to 8.
GPUS_PER_NODE int The number of GPUs to be allocated per node. Defaults to 8.
SRUN_ARGS str Arguments to be parsed by srun. Available options can be found here.
PY_ARGS str Arguments to be parsed by tools/test.py.

Here is an example of using 8 GPUs to test an example model on the 'dev' partition with job name 'test_job'.

GPUS=8 ./tools/slurm_test.sh dev test_job configs/example_config.py work_dirs/example_exp/example_model_20200202.pth --eval hmean-iou

Batch Testing

By default, MMOCR tests the model image by image. For faster inference, you may change data.val_dataloader.samples_per_gpu and data.test_dataloader.samples_per_gpu in the config. For example,

data = dict(
    ...
    val_dataloader=dict(samples_per_gpu=16),
    test_dataloader=dict(samples_per_gpu=16),
    ...
)

will test the model with 16 images in a batch.

:::{warning} Batch testing may incur performance decrease of the model due to the different behavior of the data preprocessing pipeline. :::