Lotus_Depth / utils /visualize.py
haodongli's picture
init
44189a1
import cv2
import numpy as np
import torch
from matplotlib import cm
import matplotlib.pyplot as plt
import logging
logger = logging.getLogger('root')
def tensor_to_numpy(tensor_in):
""" torch tensor to numpy array
"""
if tensor_in is not None:
if tensor_in.ndim == 3:
# (C, H, W) -> (H, W, C)
tensor_in = tensor_in.detach().cpu().permute(1, 2, 0).numpy()
elif tensor_in.ndim == 4:
# (B, C, H, W) -> (B, H, W, C)
tensor_in = tensor_in.detach().cpu().permute(0, 2, 3, 1).numpy()
else:
raise Exception('invalid tensor size')
return tensor_in
# def unnormalize(img_in, img_stats={'mean': [0.485, 0.456, 0.406],
# 'std': [0.229, 0.224, 0.225]}):
def unnormalize(img_in, img_stats={'mean': [0.5,0.5,0.5], 'std': [0.5,0.5,0.5]}):
""" unnormalize input image
"""
if torch.is_tensor(img_in):
img_in = tensor_to_numpy(img_in)
img_out = np.zeros_like(img_in)
for ich in range(3):
img_out[..., ich] = img_in[..., ich] * img_stats['std'][ich]
img_out[..., ich] += img_stats['mean'][ich]
img_out = (img_out * 255.0).astype(np.uint8)
return img_out
def normal_to_rgb(normal, normal_mask=None):
""" surface normal map to RGB
(used for visualization)
NOTE: x, y, z are mapped to R, G, B
NOTE: [-1, 1] are mapped to [0, 255]
"""
if torch.is_tensor(normal):
normal = tensor_to_numpy(normal)
normal_mask = tensor_to_numpy(normal_mask)
normal_norm = np.linalg.norm(normal, axis=-1, keepdims=True)
normal_norm[normal_norm < 1e-12] = 1e-12
normal = normal / normal_norm
normal_rgb = (((normal + 1) * 0.5) * 255).astype(np.uint8)
if normal_mask is not None:
normal_rgb = normal_rgb * normal_mask # (B, H, W, 3)
return normal_rgb
def kappa_to_alpha(pred_kappa, to_numpy=True):
""" Confidence kappa to uncertainty alpha
Assuming AngMF distribution (introduced in https://arxiv.org/abs/2109.09881)
"""
if torch.is_tensor(pred_kappa) and to_numpy:
pred_kappa = tensor_to_numpy(pred_kappa)
if torch.is_tensor(pred_kappa):
alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \
+ ((torch.exp(- pred_kappa * np.pi) * np.pi) / (1 + torch.exp(- pred_kappa * np.pi)))
alpha = torch.rad2deg(alpha)
else:
alpha = ((2 * pred_kappa) / ((pred_kappa ** 2.0) + 1)) \
+ ((np.exp(- pred_kappa * np.pi) * np.pi) / (1 + np.exp(- pred_kappa * np.pi)))
alpha = np.degrees(alpha)
return alpha
def visualize_normal(target_dir, prefixs, img, pred_norm, pred_kappa,
gt_norm, gt_norm_mask, pred_error, num_vis=-1):
""" visualize normal
"""
error_max = 60.0
img = tensor_to_numpy(img) # (B, H, W, 3)
pred_norm = tensor_to_numpy(pred_norm) # (B, H, W, 3)
pred_kappa = tensor_to_numpy(pred_kappa) # (B, H, W, 1)
gt_norm = tensor_to_numpy(gt_norm) # (B, H, W, 3)
gt_norm_mask = tensor_to_numpy(gt_norm_mask) # (B, H, W, 1)
pred_error = tensor_to_numpy(pred_error) # (B, H, W, 1)
num_vis = len(prefixs) if num_vis == -1 else num_vis
for i in range(num_vis):
# img
img_ = unnormalize(img[i, ...])
target_path = '%s/%s_img.png' % (target_dir, prefixs[i])
plt.imsave(target_path, img_)
# pred_norm
target_path = '%s/%s_norm.png' % (target_dir, prefixs[i])
plt.imsave(target_path, normal_to_rgb(pred_norm[i, ...]))
# pred_kappa
if pred_kappa is not None:
pred_alpha = kappa_to_alpha(pred_kappa[i, :, :, 0])
target_path = '%s/%s_pred_alpha.png' % (target_dir, prefixs[i])
plt.imsave(target_path, pred_alpha, vmin=0.0, vmax=error_max, cmap='jet')
# gt_norm, pred_error
if gt_norm is not None:
target_path = '%s/%s_gt.png' % (target_dir, prefixs[i])
plt.imsave(target_path, normal_to_rgb(gt_norm[i, ...], gt_norm_mask[i, ...]))
E = pred_error[i, :, :, 0] * gt_norm_mask[i, :, :, 0]
target_path = '%s/%s_pred_error.png' % (target_dir, prefixs[i])
plt.imsave(target_path, E, vmin=0, vmax=error_max, cmap='jet')