File size: 8,024 Bytes
44189a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# from utils.args import parse_args
import logging
import os
import argparse
from pathlib import Path
from PIL import Image

import numpy as np
import torch
from tqdm.auto import tqdm
from diffusers.utils import check_min_version

from pipeline import LotusGPipeline, LotusDPipeline
from utils.image_utils import colorize_depth_map
from utils.seed_all import seed_all

check_min_version('0.28.0.dev0')

def infer_pipe(pipe, image_input, task_name, seed, device):
    if seed is None:
        generator = None
    else:
        generator = torch.Generator(device=device).manual_seed(seed)

    test_image = Image.open(image_input).convert('RGB')
    test_image = np.array(test_image).astype(np.float32)
    test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
    test_image = test_image / 127.5 - 1.0 
    test_image = test_image.to(device)

    task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
    task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)

    # Run
    pred = pipe(
        rgb_in=test_image, 
        prompt='', 
        num_inference_steps=1, 
        generator=generator, 
        # guidance_scale=0,
        output_type='np',
        timesteps=[999],
        task_emb=task_emb,
        ).images[0]

    # Post-process the prediction
    if task_name == 'depth':
        output_npy = pred.mean(axis=-1)
        output_color = colorize_depth_map(output_npy)
    else:
        output_npy = pred
        output_color = Image.fromarray((output_npy * 255).astype(np.uint8))

    return output_color

def lotus(image_input, task_name, seed, device):
    if task_name == 'depth':
        model_g = 'jingheya/lotus-depth-g-v1-0'
        model_d = 'jingheya/lotus-depth-d-v1-0'
    else:
        model_g = 'jingheya/lotus-normal-g-v1-0'
        model_d = 'jingheya/lotus-normal-d-v1-0'

    dtype = torch.float32
    pipe_g = LotusGPipeline.from_pretrained(
        model_g,
        torch_dtype=dtype,
    )
    pipe_d = LotusDPipeline.from_pretrained(
        model_d,
        torch_dtype=dtype,
    )
    pipe_g.to(device)
    pipe_d.to(device)
    logging.info(f"Successfully loading pipeline from {model_g} and {model_d}.")
    output_g = infer_pipe(pipe_g, image_input, task_name, seed, device)
    output_d = infer_pipe(pipe_d, image_input, task_name, seed, device)
    return output_g, output_d

def parse_args():
    '''Set the Args'''
    parser = argparse.ArgumentParser(
        description="Run Lotus..."
    )
    # model settings
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        help="pretrained model path from hugging face or local dir",
    )
    parser.add_argument(
        "--prediction_type",
        type=str,
        default="sample",
        help="The used prediction_type. ",
    )
    parser.add_argument(
        "--timestep",
        type=int,
        default=999,
    )
    parser.add_argument(
        "--mode",
        type=str,
        default="regression", # "generation"
        help="Whether to use the generation or regression pipeline."
    )
    parser.add_argument(
        "--task_name",
        type=str,
        default="depth", # "normal"
    )
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
    
    # inference settings
    parser.add_argument("--seed", type=int, default=None, help="Random seed.")
    parser.add_argument(
        "--output_dir", type=str, required=True, help="Output directory."
    )
    parser.add_argument(
        "--input_dir", type=str, required=True, help="Input directory."
    )
    parser.add_argument(
        "--half_precision",
        action="store_true",
        help="Run with half-precision (16-bit float), might lead to suboptimal result.",
    )
    
    args = parser.parse_args()

    return args

def main():
    logging.basicConfig(level=logging.INFO)
    logging.info(f"Run inference...")
    
    args = parse_args()

    # -------------------- Preparation --------------------
    # Random seed
    if args.seed is not None:
        seed_all(args.seed)

    # Output directories
    os.makedirs(args.output_dir, exist_ok=True)
    logging.info(f"Output dir = {args.output_dir}")

    output_dir_color = os.path.join(args.output_dir, f'{args.task_name}_vis')
    output_dir_npy = os.path.join(args.output_dir, f'{args.task_name}')
    if not os.path.exists(output_dir_color): os.makedirs(output_dir_color)
    if not os.path.exists(output_dir_npy): os.makedirs(output_dir_npy)

    # half_precision
    if args.half_precision:
        dtype = torch.float16
        logging.info(f"Running with half precision ({dtype}).")
    else:
        dtype = torch.float32

    # -------------------- Device --------------------
    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")
        logging.warning("CUDA is not available. Running on CPU will be slow.")
    logging.info(f"Device = {device}")

    # -------------------- Data --------------------
    root_dir = Path(args.input_dir)
    test_images = list(root_dir.rglob('*.png')) + list(root_dir.rglob('*.jpg'))
    test_images = sorted(test_images)
    print('==> There are', len(test_images), 'images for validation.')
    # -------------------- Model --------------------
    
    if args.mode == 'generation':
        pipeline = LotusGPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            torch_dtype=dtype,
        )
    elif args.mode == 'regression':
        pipeline = LotusDPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            torch_dtype=dtype,
        )
    else:
        raise ValueError(f'Invalid mode: {args.mode}')
    logging.info(f"Successfully loading pipeline from {args.pretrained_model_name_or_path}.")

    pipeline = pipeline.to(device)
    pipeline.set_progress_bar_config(disable=True)

    if args.enable_xformers_memory_efficient_attention:
        pipeline.enable_xformers_memory_efficient_attention()


    if args.seed is None:
        generator = None
    else:
        generator = torch.Generator(device=device).manual_seed(args.seed)

    # -------------------- Inference and saving --------------------
    with torch.no_grad():
        for i in tqdm(range(len(test_images))):
            # Preprocess validation image
            test_image = Image.open(test_images[i]).convert('RGB')
            test_image = np.array(test_image).astype(np.float32)
            test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
            test_image = test_image / 127.5 - 1.0 
            test_image = test_image.to(device)

            task_emb = torch.tensor([1, 0]).float().unsqueeze(0).repeat(1, 1).to(device)
            task_emb = torch.cat([torch.sin(task_emb), torch.cos(task_emb)], dim=-1).repeat(1, 1)

            # Run
            pred = pipeline(
                rgb_in=test_image, 
                prompt='', 
                num_inference_steps=1, 
                generator=generator, 
                # guidance_scale=0,
                output_type='np',
                timesteps=[args.timestep],
                task_emb=task_emb,
                ).images[0]

            # Post-process the prediction
            save_file_name = os.path.basename(test_images[i])[:-4]
            if args.task_name == 'depth':
                output_npy = pred.mean(axis=-1)
                output_color = colorize_depth_map(output_npy)
            else:
                output_npy = pred
                output_color = Image.fromarray((output_npy * 255).astype(np.uint8))

            output_color.save(os.path.join(output_dir_color, f'{save_file_name}.png'))
            np.save(os.path.join(output_dir_npy, f'{save_file_name}.npy'), output_npy)
    
    print('==> Inference is done. \n==> Results saved to:', args.output_dir)

if __name__ == '__main__':
    main()