File size: 10,100 Bytes
7e9d3a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from __future__ import print_function
import os
import torch
from torch.utils.model_zoo import load_url
from enum import Enum
import numpy as np
import cv2
try:
    import urllib.request as request_file
except BaseException:
    import urllib as request_file

from .models import FAN, ResNetDepth
from .utils import *


class LandmarksType(Enum):
    """Enum class defining the type of landmarks to detect.

    ``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
    ``_2halfD`` - this points represent the projection of the 3D points into 3D
    ``_3D`` - detect the points ``(x,y,z)``` in a 3D space

    """
    _2D = 1
    _2halfD = 2
    _3D = 3


class NetworkSize(Enum):
    # TINY = 1
    # SMALL = 2
    # MEDIUM = 3
    LARGE = 4

    def __new__(cls, value):
        member = object.__new__(cls)
        member._value_ = value
        return member

    def __int__(self):
        return self.value



class FaceAlignment:
    def __init__(self, landmarks_type, network_size=NetworkSize.LARGE,
                 device='cuda', flip_input=False, face_detector='sfd', verbose=False):
        self.device = device
        self.flip_input = flip_input
        self.landmarks_type = landmarks_type
        self.verbose = verbose

        network_size = int(network_size)

        if 'cuda' in device:
            torch.backends.cudnn.benchmark = True
#             torch.backends.cuda.matmul.allow_tf32 = False
#             torch.backends.cudnn.benchmark = True
#             torch.backends.cudnn.deterministic = False
#             torch.backends.cudnn.allow_tf32 = True
            print('cuda start')


        # Get the face detector
        face_detector_module = __import__('face_detection.detection.' + face_detector,
                                          globals(), locals(), [face_detector], 0)
        
        self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose)

    def get_detections_for_batch(self, images):
        images = images[..., ::-1]
        detected_faces = self.face_detector.detect_from_batch(images.copy())
        results = []

        for i, d in enumerate(detected_faces):
            if len(d) == 0:
                results.append(None)
                continue
            d = d[0]
            d = np.clip(d, 0, None)
            
            x1, y1, x2, y2 = map(int, d[:-1])
            results.append((x1, y1, x2, y2))

        return results
    
    
class YOLOv8_face:
    def __init__(self, path = 'face_detection/weights/yolov8n-face.onnx', conf_thres=0.2, iou_thres=0.5):
        self.conf_threshold = conf_thres
        self.iou_threshold = iou_thres
        self.class_names = ['face']
        self.num_classes = len(self.class_names)
        # Initialize model
        self.net = cv2.dnn.readNet(path)
        self.input_height = 640
        self.input_width = 640
        self.reg_max = 16

        self.project = np.arange(self.reg_max)
        self.strides = (8, 16, 32)
        self.feats_hw = [(math.ceil(self.input_height / self.strides[i]), math.ceil(self.input_width / self.strides[i])) for i in range(len(self.strides))]
        self.anchors = self.make_anchors(self.feats_hw)

    def make_anchors(self, feats_hw, grid_cell_offset=0.5):
        """Generate anchors from features."""
        anchor_points = {}
        for i, stride in enumerate(self.strides):
            h,w = feats_hw[i]
            x = np.arange(0, w) + grid_cell_offset  # shift x
            y = np.arange(0, h) + grid_cell_offset  # shift y
            sx, sy = np.meshgrid(x, y)
            # sy, sx = np.meshgrid(y, x)
            anchor_points[stride] = np.stack((sx, sy), axis=-1).reshape(-1, 2)
        return anchor_points

    def softmax(self, x, axis=1):
        x_exp = np.exp(x)
        # 如果是列向量,则axis=0
        x_sum = np.sum(x_exp, axis=axis, keepdims=True)
        s = x_exp / x_sum
        return s
    
    def resize_image(self, srcimg, keep_ratio=True):
        top, left, newh, neww = 0, 0, self.input_width, self.input_height
        if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
            hw_scale = srcimg.shape[0] / srcimg.shape[1]
            if hw_scale > 1:
                newh, neww = self.input_height, int(self.input_width / hw_scale)
                img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
                left = int((self.input_width - neww) * 0.5)
                img = cv2.copyMakeBorder(img, 0, 0, left, self.input_width - neww - left, cv2.BORDER_CONSTANT,
                                         value=(0, 0, 0))  # add border
            else:
                newh, neww = int(self.input_height * hw_scale), self.input_width
                img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
                top = int((self.input_height - newh) * 0.5)
                img = cv2.copyMakeBorder(img, top, self.input_height - newh - top, 0, 0, cv2.BORDER_CONSTANT,
                                         value=(0, 0, 0))
        else:
            img = cv2.resize(srcimg, (self.input_width, self.input_height), interpolation=cv2.INTER_AREA)
        return img, newh, neww, top, left

    def detect(self, srcimg):
        input_img, newh, neww, padh, padw = self.resize_image(cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB))
        scale_h, scale_w = srcimg.shape[0]/newh, srcimg.shape[1]/neww
        input_img = input_img.astype(np.float32) / 255.0

        blob = cv2.dnn.blobFromImage(input_img)
        self.net.setInput(blob)
        outputs = self.net.forward(self.net.getUnconnectedOutLayersNames())
        # if isinstance(outputs, tuple):
        #     outputs = list(outputs)
        # if float(cv2.__version__[:3])>=4.7:
        #     outputs = [outputs[2], outputs[0], outputs[1]] ###opencv4.7需要这一步,opencv4.5不需要
        # Perform inference on the image
        det_bboxes, det_conf, det_classid, landmarks = self.post_process(outputs, scale_h, scale_w, padh, padw)
        return det_bboxes, det_conf, det_classid, landmarks

    def post_process(self, preds, scale_h, scale_w, padh, padw):
        bboxes, scores, landmarks = [], [], []
        for i, pred in enumerate(preds):
            stride = int(self.input_height/pred.shape[2])
            pred = pred.transpose((0, 2, 3, 1))
            
            box = pred[..., :self.reg_max * 4]
            cls = 1 / (1 + np.exp(-pred[..., self.reg_max * 4:-15])).reshape((-1,1))
            kpts = pred[..., -15:].reshape((-1,15)) ### x1,y1,score1, ..., x5,y5,score5

            # tmp = box.reshape(self.feats_hw[i][0], self.feats_hw[i][1], 4, self.reg_max)
            tmp = box.reshape(-1, 4, self.reg_max)
            bbox_pred = self.softmax(tmp, axis=-1)
            bbox_pred = np.dot(bbox_pred, self.project).reshape((-1,4))

            bbox = self.distance2bbox(self.anchors[stride], bbox_pred, max_shape=(self.input_height, self.input_width)) * stride
            kpts[:, 0::3] = (kpts[:, 0::3] * 2.0 + (self.anchors[stride][:, 0].reshape((-1,1)) - 0.5)) * stride
            kpts[:, 1::3] = (kpts[:, 1::3] * 2.0 + (self.anchors[stride][:, 1].reshape((-1,1)) - 0.5)) * stride
            kpts[:, 2::3] = 1 / (1+np.exp(-kpts[:, 2::3]))

            bbox -= np.array([[padw, padh, padw, padh]])  ###合理使用广播法则
            bbox *= np.array([[scale_w, scale_h, scale_w, scale_h]])
            kpts -= np.tile(np.array([padw, padh, 0]), 5).reshape((1,15))
            kpts *= np.tile(np.array([scale_w, scale_h, 1]), 5).reshape((1,15))

            bboxes.append(bbox)
            scores.append(cls)
            landmarks.append(kpts)

        bboxes = np.concatenate(bboxes, axis=0)
        scores = np.concatenate(scores, axis=0)
        landmarks = np.concatenate(landmarks, axis=0)
    
        bboxes_wh = bboxes.copy()
        bboxes_wh[:, 2:4] = bboxes[:, 2:4] - bboxes[:, 0:2]  ####xywh
        classIds = np.argmax(scores, axis=1)
        confidences = np.max(scores, axis=1)  ####max_class_confidence
        
        mask = confidences>self.conf_threshold
        bboxes_wh = bboxes_wh[mask]  ###合理使用广播法则
        confidences = confidences[mask]
        classIds = classIds[mask]
        landmarks = landmarks[mask]
        
        indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.conf_threshold,
                                   self.iou_threshold).flatten()
        if len(indices) > 0:
            mlvl_bboxes = bboxes_wh[indices]
            confidences = confidences[indices]
            classIds = classIds[indices]
            landmarks = landmarks[indices]
            return mlvl_bboxes, confidences, classIds, landmarks
        else:
            print('nothing detect')
            return np.array([]), np.array([]), np.array([]), np.array([])

    def distance2bbox(self, points, distance, max_shape=None):
        x1 = points[:, 0] - distance[:, 0]
        y1 = points[:, 1] - distance[:, 1]
        x2 = points[:, 0] + distance[:, 2]
        y2 = points[:, 1] + distance[:, 3]
        if max_shape is not None:
            x1 = np.clip(x1, 0, max_shape[1])
            y1 = np.clip(y1, 0, max_shape[0])
            x2 = np.clip(x2, 0, max_shape[1])
            y2 = np.clip(y2, 0, max_shape[0])
        return np.stack([x1, y1, x2, y2], axis=-1)
    
    def draw_detections(self, image, boxes, scores, kpts):
        for box, score, kp in zip(boxes, scores, kpts):
            x, y, w, h = box.astype(int)
            # Draw rectangle
            cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), thickness=3)
            cv2.putText(image, "face:"+str(round(score,2)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), thickness=2)
            for i in range(5):
                cv2.circle(image, (int(kp[i * 3]), int(kp[i * 3 + 1])), 4, (0, 255, 0), thickness=-1)
                # cv2.putText(image, str(i), (int(kp[i * 3]), int(kp[i * 3 + 1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=1)
        return image
    
ROOT = os.path.dirname(os.path.abspath(__file__))