|
from functools import partial |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from diffusers.models.activations import get_activation |
|
from diffusers.models.attention_processor import SpatialNorm |
|
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear |
|
from diffusers.models.normalization import AdaGroupNorm |
|
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ |
|
from .modeling_causal_conv import CausalConv3d, CausalGroupNorm |
|
|
|
|
|
class CausalResnetBlock3D(nn.Module): |
|
r""" |
|
A Resnet block. |
|
|
|
Parameters: |
|
in_channels (`int`): The number of channels in the input. |
|
out_channels (`int`, *optional*, default to be `None`): |
|
The number of output channels for the first conv2d layer. If None, same as `in_channels`. |
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. |
|
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. |
|
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. |
|
groups_out (`int`, *optional*, default to None): |
|
The number of groups to use for the second normalization layer. if set to None, same as `groups`. |
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. |
|
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. |
|
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. |
|
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or |
|
"ada_group" for a stronger conditioning with scale and shift. |
|
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see |
|
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. |
|
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. |
|
use_in_shortcut (`bool`, *optional*, default to `True`): |
|
If `True`, add a 1x1 nn.conv2d layer for skip-connection. |
|
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. |
|
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. |
|
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the |
|
`conv_shortcut` output. |
|
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. |
|
If None, same as `out_channels`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
in_channels: int, |
|
out_channels: Optional[int] = None, |
|
conv_shortcut: bool = False, |
|
dropout: float = 0.0, |
|
temb_channels: int = 512, |
|
groups: int = 32, |
|
groups_out: Optional[int] = None, |
|
pre_norm: bool = True, |
|
eps: float = 1e-6, |
|
non_linearity: str = "swish", |
|
time_embedding_norm: str = "default", |
|
output_scale_factor: float = 1.0, |
|
use_in_shortcut: Optional[bool] = None, |
|
conv_shortcut_bias: bool = True, |
|
conv_2d_out_channels: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.pre_norm = pre_norm |
|
self.pre_norm = True |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.output_scale_factor = output_scale_factor |
|
self.time_embedding_norm = time_embedding_norm |
|
|
|
linear_cls = nn.Linear |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm1 = SpatialNorm(in_channels, temb_channels) |
|
else: |
|
self.norm1 = CausalGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) |
|
|
|
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1) |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm2 = SpatialNorm(out_channels, temb_channels) |
|
else: |
|
self.norm2 = CausalGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) |
|
|
|
self.dropout = torch.nn.Dropout(dropout) |
|
conv_2d_out_channels = conv_2d_out_channels or out_channels |
|
self.conv2 = CausalConv3d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1) |
|
|
|
self.nonlinearity = get_activation(non_linearity) |
|
self.upsample = self.downsample = None |
|
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut |
|
|
|
self.conv_shortcut = None |
|
if self.use_in_shortcut: |
|
self.conv_shortcut = CausalConv3d( |
|
in_channels, |
|
conv_2d_out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
bias=conv_shortcut_bias, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_tensor: torch.FloatTensor, |
|
temb: torch.FloatTensor = None, |
|
is_init_image=True, |
|
temporal_chunk=False, |
|
) -> torch.FloatTensor: |
|
hidden_states = input_tensor |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm1(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm1(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.conv1(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
if temb is not None and self.time_embedding_norm == "default": |
|
hidden_states = hidden_states + temb |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm2(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm2(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = self.conv_shortcut(input_tensor, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
|
|
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor |
|
|
|
return output_tensor |
|
|
|
|
|
class ResnetBlock2D(nn.Module): |
|
r""" |
|
A Resnet block. |
|
|
|
Parameters: |
|
in_channels (`int`): The number of channels in the input. |
|
out_channels (`int`, *optional*, default to be `None`): |
|
The number of output channels for the first conv2d layer. If None, same as `in_channels`. |
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. |
|
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. |
|
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. |
|
groups_out (`int`, *optional*, default to None): |
|
The number of groups to use for the second normalization layer. if set to None, same as `groups`. |
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. |
|
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. |
|
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. |
|
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or |
|
"ada_group" for a stronger conditioning with scale and shift. |
|
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see |
|
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. |
|
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. |
|
use_in_shortcut (`bool`, *optional*, default to `True`): |
|
If `True`, add a 1x1 nn.conv2d layer for skip-connection. |
|
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. |
|
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. |
|
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the |
|
`conv_shortcut` output. |
|
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. |
|
If None, same as `out_channels`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
in_channels: int, |
|
out_channels: Optional[int] = None, |
|
conv_shortcut: bool = False, |
|
dropout: float = 0.0, |
|
temb_channels: int = 512, |
|
groups: int = 32, |
|
groups_out: Optional[int] = None, |
|
pre_norm: bool = True, |
|
eps: float = 1e-6, |
|
non_linearity: str = "swish", |
|
time_embedding_norm: str = "default", |
|
output_scale_factor: float = 1.0, |
|
use_in_shortcut: Optional[bool] = None, |
|
conv_shortcut_bias: bool = True, |
|
conv_2d_out_channels: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.pre_norm = pre_norm |
|
self.pre_norm = True |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.output_scale_factor = output_scale_factor |
|
self.time_embedding_norm = time_embedding_norm |
|
|
|
linear_cls = nn.Linear |
|
conv_cls = nn.Conv3d |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm1 = SpatialNorm(in_channels, temb_channels) |
|
else: |
|
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) |
|
|
|
self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm2 = SpatialNorm(out_channels, temb_channels) |
|
else: |
|
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) |
|
|
|
self.dropout = torch.nn.Dropout(dropout) |
|
conv_2d_out_channels = conv_2d_out_channels or out_channels |
|
self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
self.nonlinearity = get_activation(non_linearity) |
|
self.upsample = self.downsample = None |
|
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut |
|
|
|
self.conv_shortcut = None |
|
if self.use_in_shortcut: |
|
self.conv_shortcut = conv_cls( |
|
in_channels, |
|
conv_2d_out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
bias=conv_shortcut_bias, |
|
) |
|
|
|
def forward( |
|
self, |
|
input_tensor: torch.FloatTensor, |
|
temb: torch.FloatTensor = None, |
|
scale: float = 1.0, |
|
) -> torch.FloatTensor: |
|
hidden_states = input_tensor |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm1(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm1(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.conv1(hidden_states) |
|
|
|
if temb is not None and self.time_embedding_norm == "default": |
|
hidden_states = hidden_states + temb |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm2(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm2(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = self.conv_shortcut(input_tensor) |
|
|
|
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor |
|
|
|
return output_tensor |
|
|
|
|
|
class CausalDownsample2x(nn.Module): |
|
"""A 2D downsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
padding (`int`, default `1`): |
|
padding for the convolution. |
|
name (`str`, default `conv`): |
|
name of the downsampling 2D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = True, |
|
out_channels: Optional[int] = None, |
|
name: str = "conv", |
|
kernel_size=3, |
|
bias=True, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
stride = (1, 2, 2) |
|
self.name = name |
|
|
|
if use_conv: |
|
conv = CausalConv3d( |
|
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, bias=bias |
|
) |
|
else: |
|
assert self.channels == self.out_channels |
|
conv = nn.AvgPool3d(kernel_size=stride, stride=stride) |
|
|
|
self.conv = conv |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, is_init_image=True, temporal_chunk=False) -> torch.FloatTensor: |
|
assert hidden_states.shape[1] == self.channels |
|
hidden_states = self.conv(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
return hidden_states |
|
|
|
|
|
class Downsample2D(nn.Module): |
|
"""A 2D downsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
padding (`int`, default `1`): |
|
padding for the convolution. |
|
name (`str`, default `conv`): |
|
name of the downsampling 2D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = True, |
|
out_channels: Optional[int] = None, |
|
padding: int = 0, |
|
name: str = "conv", |
|
kernel_size=3, |
|
bias=True, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = (1, 2, 2) |
|
self.name = name |
|
conv_cls = nn.Conv3d |
|
|
|
if use_conv: |
|
conv = conv_cls( |
|
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias |
|
) |
|
else: |
|
assert self.channels == self.out_channels |
|
conv = nn.AvgPool2d(kernel_size=stride, stride=stride) |
|
|
|
self.conv = conv |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
if self.use_conv and self.padding == 0: |
|
pad = (0, 1, 0, 1, 1, 1) |
|
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) |
|
|
|
assert hidden_states.shape[1] == self.channels |
|
|
|
hidden_states = self.conv(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class TemporalDownsample2x(nn.Module): |
|
"""A Temporal downsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
padding (`int`, default `1`): |
|
padding for the convolution. |
|
name (`str`, default `conv`): |
|
name of the downsampling 2D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = False, |
|
out_channels: Optional[int] = None, |
|
padding: int = 0, |
|
kernel_size=3, |
|
bias=True, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = (2, 1, 1) |
|
|
|
conv_cls = nn.Conv3d |
|
|
|
if use_conv: |
|
conv = conv_cls( |
|
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias |
|
) |
|
else: |
|
raise NotImplementedError("Not implemented for temporal downsample without") |
|
|
|
self.conv = conv |
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
if self.use_conv and self.padding == 0: |
|
if hidden_states.shape[2] == 1: |
|
|
|
pad = (1, 1, 1, 1, 1, 1) |
|
else: |
|
|
|
pad = (1, 1, 1, 1, 0, 1) |
|
|
|
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) |
|
|
|
hidden_states = self.conv(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class CausalTemporalDownsample2x(nn.Module): |
|
"""A Temporal downsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
padding (`int`, default `1`): |
|
padding for the convolution. |
|
name (`str`, default `conv`): |
|
name of the downsampling 2D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = False, |
|
out_channels: Optional[int] = None, |
|
kernel_size=3, |
|
bias=True, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
stride = (2, 1, 1) |
|
|
|
conv_cls = nn.Conv3d |
|
|
|
if use_conv: |
|
conv = CausalConv3d( |
|
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, bias=bias |
|
) |
|
else: |
|
raise NotImplementedError("Not implemented for temporal downsample without") |
|
|
|
self.conv = conv |
|
|
|
def forward(self, hidden_states: torch.FloatTensor, is_init_image=True, temporal_chunk=False) -> torch.FloatTensor: |
|
assert hidden_states.shape[1] == self.channels |
|
hidden_states = self.conv(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
return hidden_states |
|
|
|
|
|
class Upsample2D(nn.Module): |
|
"""A 2D upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
name (`str`, default `conv`): |
|
name of the upsampling 2D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = False, |
|
out_channels: Optional[int] = None, |
|
name: str = "conv", |
|
kernel_size: Optional[int] = None, |
|
padding=1, |
|
bias=True, |
|
interpolate=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.name = name |
|
self.interpolate = interpolate |
|
conv_cls = nn.Conv3d |
|
conv = None |
|
|
|
if interpolate: |
|
raise NotImplementedError("Not implemented for spatial upsample with interpolate") |
|
else: |
|
if kernel_size is None: |
|
kernel_size = 3 |
|
conv = conv_cls(self.channels, self.out_channels * 4, kernel_size=kernel_size, padding=padding, bias=bias) |
|
|
|
self.conv = conv |
|
self.conv.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Linear, nn.Conv2d, nn.Conv3d)): |
|
trunc_normal_(m.weight, std=.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
hidden_states = self.conv(hidden_states) |
|
hidden_states = rearrange(hidden_states, 'b (c p1 p2) t h w -> b c t (h p1) (w p2)', p1=2, p2=2) |
|
|
|
return hidden_states |
|
|
|
|
|
class CausalUpsample2x(nn.Module): |
|
"""A 2D upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
name (`str`, default `conv`): |
|
name of the upsampling 2D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = False, |
|
out_channels: Optional[int] = None, |
|
name: str = "conv", |
|
kernel_size: Optional[int] = 3, |
|
bias=True, |
|
interpolate=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.name = name |
|
self.interpolate = interpolate |
|
conv = None |
|
|
|
if interpolate: |
|
raise NotImplementedError("Not implemented for spatial upsample with interpolate") |
|
else: |
|
conv = CausalConv3d(self.channels, self.out_channels * 4, kernel_size=kernel_size, stride=1, bias=bias) |
|
|
|
self.conv = conv |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
is_init_image=True, temporal_chunk=False, |
|
) -> torch.FloatTensor: |
|
assert hidden_states.shape[1] == self.channels |
|
hidden_states = self.conv(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
hidden_states = rearrange(hidden_states, 'b (c p1 p2) t h w -> b c t (h p1) (w p2)', p1=2, p2=2) |
|
return hidden_states |
|
|
|
|
|
class TemporalUpsample2x(nn.Module): |
|
"""A 2D upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
name (`str`, default `conv`): |
|
name of the upsampling 2D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = True, |
|
out_channels: Optional[int] = None, |
|
kernel_size: Optional[int] = None, |
|
padding=1, |
|
bias=True, |
|
interpolate=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.interpolate = interpolate |
|
conv_cls = nn.Conv3d |
|
|
|
conv = None |
|
if interpolate: |
|
raise NotImplementedError("Not implemented for spatial upsample with interpolate") |
|
else: |
|
|
|
if kernel_size is None: |
|
kernel_size = 3 |
|
conv = conv_cls(self.channels, self.out_channels * 2, kernel_size=kernel_size, padding=padding, bias=bias) |
|
|
|
self.conv = conv |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
is_image: bool = False, |
|
) -> torch.FloatTensor: |
|
assert hidden_states.shape[1] == self.channels |
|
t = hidden_states.shape[2] |
|
hidden_states = self.conv(hidden_states) |
|
hidden_states = rearrange(hidden_states, 'b (c p) t h w -> b c (p t) h w', p=2) |
|
|
|
if t == 1 and is_image: |
|
hidden_states = hidden_states[:, :, 1:] |
|
|
|
return hidden_states |
|
|
|
|
|
class CausalTemporalUpsample2x(nn.Module): |
|
"""A 2D upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
name (`str`, default `conv`): |
|
name of the upsampling 2D layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
use_conv: bool = True, |
|
out_channels: Optional[int] = None, |
|
kernel_size: Optional[int] = 3, |
|
bias=True, |
|
interpolate=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.interpolate = interpolate |
|
|
|
conv = None |
|
if interpolate: |
|
raise NotImplementedError("Not implemented for spatial upsample with interpolate") |
|
else: |
|
|
|
conv = CausalConv3d(self.channels, self.out_channels * 2, kernel_size=kernel_size, stride=1, bias=bias) |
|
|
|
self.conv = conv |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
is_init_image=True, temporal_chunk=False, |
|
) -> torch.FloatTensor: |
|
assert hidden_states.shape[1] == self.channels |
|
t = hidden_states.shape[2] |
|
hidden_states = self.conv(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) |
|
hidden_states = rearrange(hidden_states, 'b (c p) t h w -> b c (t p) h w', p=2) |
|
|
|
if is_init_image: |
|
hidden_states = hidden_states[:, :, 1:] |
|
|
|
return hidden_states |