File size: 27,409 Bytes
f0533a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
from functools import partial
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from diffusers.models.activations import get_activation
from diffusers.models.attention_processor import SpatialNorm
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from diffusers.models.normalization import AdaGroupNorm
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
from .modeling_causal_conv import CausalConv3d, CausalGroupNorm
class CausalResnetBlock3D(nn.Module):
r"""
A Resnet block.
Parameters:
in_channels (`int`): The number of channels in the input.
out_channels (`int`, *optional*, default to be `None`):
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
groups_out (`int`, *optional*, default to None):
The number of groups to use for the second normalization layer. if set to None, same as `groups`.
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or
"ada_group" for a stronger conditioning with scale and shift.
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
use_in_shortcut (`bool`, *optional*, default to `True`):
If `True`, add a 1x1 nn.conv2d layer for skip-connection.
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the
`conv_shortcut` output.
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
If None, same as `out_channels`.
"""
def __init__(
self,
*,
in_channels: int,
out_channels: Optional[int] = None,
conv_shortcut: bool = False,
dropout: float = 0.0,
temb_channels: int = 512,
groups: int = 32,
groups_out: Optional[int] = None,
pre_norm: bool = True,
eps: float = 1e-6,
non_linearity: str = "swish",
time_embedding_norm: str = "default", # default, scale_shift, ada_group, spatial
output_scale_factor: float = 1.0,
use_in_shortcut: Optional[bool] = None,
conv_shortcut_bias: bool = True,
conv_2d_out_channels: Optional[int] = None,
):
super().__init__()
self.pre_norm = pre_norm
self.pre_norm = True
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.output_scale_factor = output_scale_factor
self.time_embedding_norm = time_embedding_norm
linear_cls = nn.Linear
if groups_out is None:
groups_out = groups
if self.time_embedding_norm == "ada_group":
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
elif self.time_embedding_norm == "spatial":
self.norm1 = SpatialNorm(in_channels, temb_channels)
else:
self.norm1 = CausalGroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1)
if self.time_embedding_norm == "ada_group":
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
elif self.time_embedding_norm == "spatial":
self.norm2 = SpatialNorm(out_channels, temb_channels)
else:
self.norm2 = CausalGroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
self.dropout = torch.nn.Dropout(dropout)
conv_2d_out_channels = conv_2d_out_channels or out_channels
self.conv2 = CausalConv3d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1)
self.nonlinearity = get_activation(non_linearity)
self.upsample = self.downsample = None
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut
self.conv_shortcut = None
if self.use_in_shortcut:
self.conv_shortcut = CausalConv3d(
in_channels,
conv_2d_out_channels,
kernel_size=1,
stride=1,
bias=conv_shortcut_bias,
)
def forward(
self,
input_tensor: torch.FloatTensor,
temb: torch.FloatTensor = None,
is_init_image=True,
temporal_chunk=False,
) -> torch.FloatTensor:
hidden_states = input_tensor
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
hidden_states = self.norm1(hidden_states, temb)
else:
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk)
if temb is not None and self.time_embedding_norm == "default":
hidden_states = hidden_states + temb
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
hidden_states = self.norm2(hidden_states, temb)
else:
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor, is_init_image=is_init_image, temporal_chunk=temporal_chunk)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
return output_tensor
class ResnetBlock2D(nn.Module):
r"""
A Resnet block.
Parameters:
in_channels (`int`): The number of channels in the input.
out_channels (`int`, *optional*, default to be `None`):
The number of output channels for the first conv2d layer. If None, same as `in_channels`.
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
groups_out (`int`, *optional*, default to None):
The number of groups to use for the second normalization layer. if set to None, same as `groups`.
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or
"ada_group" for a stronger conditioning with scale and shift.
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
use_in_shortcut (`bool`, *optional*, default to `True`):
If `True`, add a 1x1 nn.conv2d layer for skip-connection.
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the
`conv_shortcut` output.
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
If None, same as `out_channels`.
"""
def __init__(
self,
*,
in_channels: int,
out_channels: Optional[int] = None,
conv_shortcut: bool = False,
dropout: float = 0.0,
temb_channels: int = 512,
groups: int = 32,
groups_out: Optional[int] = None,
pre_norm: bool = True,
eps: float = 1e-6,
non_linearity: str = "swish",
time_embedding_norm: str = "default", # default, scale_shift, ada_group, spatial
output_scale_factor: float = 1.0,
use_in_shortcut: Optional[bool] = None,
conv_shortcut_bias: bool = True,
conv_2d_out_channels: Optional[int] = None,
):
super().__init__()
self.pre_norm = pre_norm
self.pre_norm = True
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.output_scale_factor = output_scale_factor
self.time_embedding_norm = time_embedding_norm
linear_cls = nn.Linear
conv_cls = nn.Conv3d
if groups_out is None:
groups_out = groups
if self.time_embedding_norm == "ada_group":
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
elif self.time_embedding_norm == "spatial":
self.norm1 = SpatialNorm(in_channels, temb_channels)
else:
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = conv_cls(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
if self.time_embedding_norm == "ada_group":
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
elif self.time_embedding_norm == "spatial":
self.norm2 = SpatialNorm(out_channels, temb_channels)
else:
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
self.dropout = torch.nn.Dropout(dropout)
conv_2d_out_channels = conv_2d_out_channels or out_channels
self.conv2 = conv_cls(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
self.nonlinearity = get_activation(non_linearity)
self.upsample = self.downsample = None
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut
self.conv_shortcut = None
if self.use_in_shortcut:
self.conv_shortcut = conv_cls(
in_channels,
conv_2d_out_channels,
kernel_size=1,
stride=1,
padding=0,
bias=conv_shortcut_bias,
)
def forward(
self,
input_tensor: torch.FloatTensor,
temb: torch.FloatTensor = None,
scale: float = 1.0,
) -> torch.FloatTensor:
hidden_states = input_tensor
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
hidden_states = self.norm1(hidden_states, temb)
else:
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
if temb is not None and self.time_embedding_norm == "default":
hidden_states = hidden_states + temb
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial":
hidden_states = self.norm2(hidden_states, temb)
else:
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
return output_tensor
class CausalDownsample2x(nn.Module):
"""A 2D downsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
padding (`int`, default `1`):
padding for the convolution.
name (`str`, default `conv`):
name of the downsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = True,
out_channels: Optional[int] = None,
name: str = "conv",
kernel_size=3,
bias=True,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
stride = (1, 2, 2)
self.name = name
if use_conv:
conv = CausalConv3d(
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, bias=bias
)
else:
assert self.channels == self.out_channels
conv = nn.AvgPool3d(kernel_size=stride, stride=stride)
self.conv = conv
def forward(self, hidden_states: torch.FloatTensor, is_init_image=True, temporal_chunk=False) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
hidden_states = self.conv(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk)
return hidden_states
class Downsample2D(nn.Module):
"""A 2D downsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
padding (`int`, default `1`):
padding for the convolution.
name (`str`, default `conv`):
name of the downsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = True,
out_channels: Optional[int] = None,
padding: int = 0,
name: str = "conv",
kernel_size=3,
bias=True,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.padding = padding
stride = (1, 2, 2)
self.name = name
conv_cls = nn.Conv3d
if use_conv:
conv = conv_cls(
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias
)
else:
assert self.channels == self.out_channels
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
self.conv = conv
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
if self.use_conv and self.padding == 0:
pad = (0, 1, 0, 1, 1, 1)
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
assert hidden_states.shape[1] == self.channels
hidden_states = self.conv(hidden_states)
return hidden_states
class TemporalDownsample2x(nn.Module):
"""A Temporal downsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
padding (`int`, default `1`):
padding for the convolution.
name (`str`, default `conv`):
name of the downsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
out_channels: Optional[int] = None,
padding: int = 0,
kernel_size=3,
bias=True,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.padding = padding
stride = (2, 1, 1)
conv_cls = nn.Conv3d
if use_conv:
conv = conv_cls(
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias
)
else:
raise NotImplementedError("Not implemented for temporal downsample without")
self.conv = conv
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
if self.use_conv and self.padding == 0:
if hidden_states.shape[2] == 1:
# image
pad = (1, 1, 1, 1, 1, 1)
else:
# video
pad = (1, 1, 1, 1, 0, 1)
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
hidden_states = self.conv(hidden_states)
return hidden_states
class CausalTemporalDownsample2x(nn.Module):
"""A Temporal downsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
padding (`int`, default `1`):
padding for the convolution.
name (`str`, default `conv`):
name of the downsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
out_channels: Optional[int] = None,
kernel_size=3,
bias=True,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
stride = (2, 1, 1)
conv_cls = nn.Conv3d
if use_conv:
conv = CausalConv3d(
self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, bias=bias
)
else:
raise NotImplementedError("Not implemented for temporal downsample without")
self.conv = conv
def forward(self, hidden_states: torch.FloatTensor, is_init_image=True, temporal_chunk=False) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
hidden_states = self.conv(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk)
return hidden_states
class Upsample2D(nn.Module):
"""A 2D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
name (`str`, default `conv`):
name of the upsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
out_channels: Optional[int] = None,
name: str = "conv",
kernel_size: Optional[int] = None,
padding=1,
bias=True,
interpolate=False,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.name = name
self.interpolate = interpolate
conv_cls = nn.Conv3d
conv = None
if interpolate:
raise NotImplementedError("Not implemented for spatial upsample with interpolate")
else:
if kernel_size is None:
kernel_size = 3
conv = conv_cls(self.channels, self.out_channels * 4, kernel_size=kernel_size, padding=padding, bias=bias)
self.conv = conv
self.conv.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Linear, nn.Conv2d, nn.Conv3d)):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(
self,
hidden_states: torch.FloatTensor,
) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
hidden_states = self.conv(hidden_states)
hidden_states = rearrange(hidden_states, 'b (c p1 p2) t h w -> b c t (h p1) (w p2)', p1=2, p2=2)
return hidden_states
class CausalUpsample2x(nn.Module):
"""A 2D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
name (`str`, default `conv`):
name of the upsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
out_channels: Optional[int] = None,
name: str = "conv",
kernel_size: Optional[int] = 3,
bias=True,
interpolate=False,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.name = name
self.interpolate = interpolate
conv = None
if interpolate:
raise NotImplementedError("Not implemented for spatial upsample with interpolate")
else:
conv = CausalConv3d(self.channels, self.out_channels * 4, kernel_size=kernel_size, stride=1, bias=bias)
self.conv = conv
def forward(
self,
hidden_states: torch.FloatTensor,
is_init_image=True, temporal_chunk=False,
) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
hidden_states = self.conv(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk)
hidden_states = rearrange(hidden_states, 'b (c p1 p2) t h w -> b c t (h p1) (w p2)', p1=2, p2=2)
return hidden_states
class TemporalUpsample2x(nn.Module):
"""A 2D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
name (`str`, default `conv`):
name of the upsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = True,
out_channels: Optional[int] = None,
kernel_size: Optional[int] = None,
padding=1,
bias=True,
interpolate=False,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.interpolate = interpolate
conv_cls = nn.Conv3d
conv = None
if interpolate:
raise NotImplementedError("Not implemented for spatial upsample with interpolate")
else:
# depth to space operator
if kernel_size is None:
kernel_size = 3
conv = conv_cls(self.channels, self.out_channels * 2, kernel_size=kernel_size, padding=padding, bias=bias)
self.conv = conv
def forward(
self,
hidden_states: torch.FloatTensor,
is_image: bool = False,
) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
t = hidden_states.shape[2]
hidden_states = self.conv(hidden_states)
hidden_states = rearrange(hidden_states, 'b (c p) t h w -> b c (p t) h w', p=2)
if t == 1 and is_image:
hidden_states = hidden_states[:, :, 1:]
return hidden_states
class CausalTemporalUpsample2x(nn.Module):
"""A 2D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
name (`str`, default `conv`):
name of the upsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = True,
out_channels: Optional[int] = None,
kernel_size: Optional[int] = 3,
bias=True,
interpolate=False,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.interpolate = interpolate
conv = None
if interpolate:
raise NotImplementedError("Not implemented for spatial upsample with interpolate")
else:
# depth to space operator
conv = CausalConv3d(self.channels, self.out_channels * 2, kernel_size=kernel_size, stride=1, bias=bias)
self.conv = conv
def forward(
self,
hidden_states: torch.FloatTensor,
is_init_image=True, temporal_chunk=False,
) -> torch.FloatTensor:
assert hidden_states.shape[1] == self.channels
t = hidden_states.shape[2]
hidden_states = self.conv(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk)
hidden_states = rearrange(hidden_states, 'b (c p) t h w -> b c (t p) h w', p=2)
if is_init_image:
hidden_states = hidden_states[:, :, 1:]
return hidden_states |