|
import torch |
|
import torch.nn as nn |
|
import os |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import is_torch_version |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
from tqdm import tqdm |
|
|
|
from .modeling_embedding import PatchEmbed3D, CombinedTimestepConditionEmbeddings |
|
from .modeling_normalization import AdaLayerNormContinuous |
|
from .modeling_mmdit_block import JointTransformerBlock |
|
|
|
from trainer_misc import ( |
|
is_sequence_parallel_initialized, |
|
get_sequence_parallel_group, |
|
get_sequence_parallel_world_size, |
|
get_sequence_parallel_rank, |
|
all_to_all, |
|
) |
|
|
|
from IPython import embed |
|
|
|
|
|
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor: |
|
assert dim % 2 == 0, "The dimension must be even." |
|
|
|
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim |
|
omega = 1.0 / (theta**scale) |
|
|
|
batch_size, seq_length = pos.shape |
|
out = torch.einsum("...n,d->...nd", pos, omega) |
|
cos_out = torch.cos(out) |
|
sin_out = torch.sin(out) |
|
|
|
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) |
|
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2) |
|
return out.float() |
|
|
|
|
|
class EmbedNDRoPE(nn.Module): |
|
def __init__(self, dim: int, theta: int, axes_dim: List[int]): |
|
super().__init__() |
|
self.dim = dim |
|
self.theta = theta |
|
self.axes_dim = axes_dim |
|
|
|
def forward(self, ids: torch.Tensor) -> torch.Tensor: |
|
n_axes = ids.shape[-1] |
|
emb = torch.cat( |
|
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], |
|
dim=-3, |
|
) |
|
return emb.unsqueeze(2) |
|
|
|
|
|
class PyramidDiffusionMMDiT(ModelMixin, ConfigMixin): |
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: int = 128, |
|
patch_size: int = 2, |
|
in_channels: int = 16, |
|
num_layers: int = 24, |
|
attention_head_dim: int = 64, |
|
num_attention_heads: int = 24, |
|
caption_projection_dim: int = 1152, |
|
pooled_projection_dim: int = 2048, |
|
pos_embed_max_size: int = 192, |
|
max_num_frames: int = 200, |
|
qk_norm: str = 'rms_norm', |
|
pos_embed_type: str = 'rope', |
|
temp_pos_embed_type: str = 'sincos', |
|
joint_attention_dim: int = 4096, |
|
use_gradient_checkpointing: bool = False, |
|
use_flash_attn: bool = True, |
|
use_temporal_causal: bool = False, |
|
use_t5_mask: bool = False, |
|
add_temp_pos_embed: bool = False, |
|
interp_condition_pos: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.out_channels = in_channels |
|
self.inner_dim = num_attention_heads * attention_head_dim |
|
assert temp_pos_embed_type in ['rope', 'sincos'] |
|
|
|
|
|
self.pos_embed = PatchEmbed3D( |
|
height=sample_size, |
|
width=sample_size, |
|
patch_size=patch_size, |
|
in_channels=in_channels, |
|
embed_dim=self.inner_dim, |
|
pos_embed_max_size=pos_embed_max_size, |
|
max_num_frames=max_num_frames, |
|
pos_embed_type=pos_embed_type, |
|
temp_pos_embed_type=temp_pos_embed_type, |
|
add_temp_pos_embed=add_temp_pos_embed, |
|
interp_condition_pos=interp_condition_pos, |
|
) |
|
|
|
|
|
if pos_embed_type == 'rope': |
|
self.rope_embed = EmbedNDRoPE(self.inner_dim, 10000, axes_dim=[16, 24, 24]) |
|
else: |
|
self.rope_embed = None |
|
|
|
if temp_pos_embed_type == 'rope': |
|
self.temp_rope_embed = EmbedNDRoPE(self.inner_dim, 10000, axes_dim=[attention_head_dim]) |
|
else: |
|
self.temp_rope_embed = None |
|
|
|
self.time_text_embed = CombinedTimestepConditionEmbeddings( |
|
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim, |
|
) |
|
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
JointTransformerBlock( |
|
dim=self.inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=self.inner_dim, |
|
qk_norm=qk_norm, |
|
context_pre_only=i == num_layers - 1, |
|
use_flash_attn=use_flash_attn, |
|
) |
|
for i in range(num_layers) |
|
] |
|
) |
|
|
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) |
|
self.gradient_checkpointing = use_gradient_checkpointing |
|
self.patch_size = patch_size |
|
self.use_flash_attn = use_flash_attn |
|
self.use_temporal_causal = use_temporal_causal |
|
self.pos_embed_type = pos_embed_type |
|
self.temp_pos_embed_type = temp_pos_embed_type |
|
self.add_temp_pos_embed = add_temp_pos_embed |
|
|
|
if self.use_temporal_causal: |
|
print("Using temporal causal attention") |
|
assert self.use_flash_attn is False, "The flash attention does not support temporal causal" |
|
|
|
if interp_condition_pos: |
|
print("We interp the position embedding of condition latents") |
|
|
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
|
|
def _basic_init(module): |
|
if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
if module.bias is not None: |
|
nn.init.constant_(module.bias, 0) |
|
self.apply(_basic_init) |
|
|
|
|
|
w = self.pos_embed.proj.weight.data |
|
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) |
|
nn.init.constant_(self.pos_embed.proj.bias, 0) |
|
|
|
|
|
nn.init.normal_(self.time_text_embed.timestep_embedder.linear_1.weight, std=0.02) |
|
nn.init.normal_(self.time_text_embed.timestep_embedder.linear_2.weight, std=0.02) |
|
nn.init.normal_(self.time_text_embed.text_embedder.linear_1.weight, std=0.02) |
|
nn.init.normal_(self.time_text_embed.text_embedder.linear_2.weight, std=0.02) |
|
nn.init.normal_(self.context_embedder.weight, std=0.02) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
nn.init.constant_(block.norm1.linear.weight, 0) |
|
nn.init.constant_(block.norm1.linear.bias, 0) |
|
nn.init.constant_(block.norm1_context.linear.weight, 0) |
|
nn.init.constant_(block.norm1_context.linear.bias, 0) |
|
|
|
|
|
nn.init.constant_(self.norm_out.linear.weight, 0) |
|
nn.init.constant_(self.norm_out.linear.bias, 0) |
|
nn.init.constant_(self.proj_out.weight, 0) |
|
nn.init.constant_(self.proj_out.bias, 0) |
|
|
|
@torch.no_grad() |
|
def _prepare_latent_image_ids(self, batch_size, temp, height, width, device): |
|
latent_image_ids = torch.zeros(temp, height, width, 3) |
|
latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(temp)[:, None, None] |
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[None, :, None] |
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, None, :] |
|
|
|
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1) |
|
latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c') |
|
return latent_image_ids.to(device=device) |
|
|
|
@torch.no_grad() |
|
def _prepare_pyramid_latent_image_ids(self, batch_size, temp_list, height_list, width_list, device): |
|
base_width = width_list[-1]; base_height = height_list[-1] |
|
assert base_width == max(width_list) |
|
assert base_height == max(height_list) |
|
|
|
image_ids_list = [] |
|
for temp, height, width in zip(temp_list, height_list, width_list): |
|
latent_image_ids = torch.zeros(temp, height, width, 3) |
|
|
|
if height != base_height: |
|
height_pos = F.interpolate(torch.arange(base_height)[None, None, :].float(), height, mode='linear').squeeze(0, 1) |
|
else: |
|
height_pos = torch.arange(base_height).float() |
|
if width != base_width: |
|
width_pos = F.interpolate(torch.arange(base_width)[None, None, :].float(), width, mode='linear').squeeze(0, 1) |
|
else: |
|
width_pos = torch.arange(base_width).float() |
|
|
|
latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(temp)[:, None, None] |
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + height_pos[None, :, None] |
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + width_pos[None, None, :] |
|
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1) |
|
latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c').to(device) |
|
image_ids_list.append(latent_image_ids) |
|
|
|
return image_ids_list |
|
|
|
@torch.no_grad() |
|
def _prepare_temporal_rope_ids(self, batch_size, temp, height, width, device, start_time_stamp=0): |
|
latent_image_ids = torch.zeros(temp, height, width, 1) |
|
latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(start_time_stamp, start_time_stamp + temp)[:, None, None] |
|
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1) |
|
latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c') |
|
return latent_image_ids.to(device=device) |
|
|
|
@torch.no_grad() |
|
def _prepare_pyramid_temporal_rope_ids(self, sample, batch_size, device): |
|
image_ids_list = [] |
|
|
|
for i_b, sample_ in enumerate(sample): |
|
if not isinstance(sample_, list): |
|
sample_ = [sample_] |
|
|
|
cur_image_ids = [] |
|
start_time_stamp = 0 |
|
|
|
for clip_ in sample_: |
|
_, _, temp, height, width = clip_.shape |
|
height = height // self.patch_size |
|
width = width // self.patch_size |
|
cur_image_ids.append(self._prepare_temporal_rope_ids(batch_size, temp, height, width, device, start_time_stamp=start_time_stamp)) |
|
start_time_stamp += temp |
|
|
|
cur_image_ids = torch.cat(cur_image_ids, dim=1) |
|
image_ids_list.append(cur_image_ids) |
|
|
|
return image_ids_list |
|
|
|
def merge_input(self, sample, encoder_hidden_length, encoder_attention_mask): |
|
""" |
|
Merge the input video with different resolutions into one sequence |
|
Sample: From low resolution to high resolution |
|
""" |
|
if isinstance(sample[0], list): |
|
device = sample[0][-1].device |
|
pad_batch_size = sample[0][-1].shape[0] |
|
else: |
|
device = sample[0].device |
|
pad_batch_size = sample[0].shape[0] |
|
|
|
num_stages = len(sample) |
|
height_list = [];width_list = [];temp_list = [] |
|
trainable_token_list = [] |
|
|
|
for i_b, sample_ in enumerate(sample): |
|
if isinstance(sample_, list): |
|
sample_ = sample_[-1] |
|
_, _, temp, height, width = sample_.shape |
|
height = height // self.patch_size |
|
width = width // self.patch_size |
|
temp_list.append(temp) |
|
height_list.append(height) |
|
width_list.append(width) |
|
trainable_token_list.append(height * width * temp) |
|
|
|
|
|
if self.pos_embed_type == 'rope': |
|
|
|
raise NotImplementedError("Not compatible with video generation now") |
|
text_ids = torch.zeros(pad_batch_size, encoder_hidden_length, 3).to(device=device) |
|
image_ids_list = self._prepare_pyramid_latent_image_ids(pad_batch_size, temp_list, height_list, width_list, device) |
|
input_ids_list = [torch.cat([text_ids, image_ids], dim=1) for image_ids in image_ids_list] |
|
image_rotary_emb = [self.rope_embed(input_ids) for input_ids in input_ids_list] |
|
else: |
|
if self.temp_pos_embed_type == 'rope' and self.add_temp_pos_embed: |
|
image_ids_list = self._prepare_pyramid_temporal_rope_ids(sample, pad_batch_size, device) |
|
text_ids = torch.zeros(pad_batch_size, encoder_attention_mask.shape[1], 1).to(device=device) |
|
input_ids_list = [torch.cat([text_ids, image_ids], dim=1) for image_ids in image_ids_list] |
|
image_rotary_emb = [self.temp_rope_embed(input_ids) for input_ids in input_ids_list] |
|
|
|
if is_sequence_parallel_initialized(): |
|
sp_group = get_sequence_parallel_group() |
|
sp_group_size = get_sequence_parallel_world_size() |
|
image_rotary_emb = [all_to_all(x_.repeat(1, 1, sp_group_size, 1, 1, 1), sp_group, sp_group_size, scatter_dim=2, gather_dim=0) for x_ in image_rotary_emb] |
|
input_ids_list = [all_to_all(input_ids.repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0) for input_ids in input_ids_list] |
|
|
|
else: |
|
image_rotary_emb = None |
|
|
|
hidden_states = self.pos_embed(sample) |
|
hidden_length = [] |
|
|
|
for i_b in range(num_stages): |
|
hidden_length.append(hidden_states[i_b].shape[1]) |
|
|
|
|
|
if self.use_flash_attn: |
|
attention_mask = None |
|
indices_list = [] |
|
for i_p, length in enumerate(hidden_length): |
|
pad_attention_mask = torch.ones((pad_batch_size, length), dtype=encoder_attention_mask.dtype).to(device) |
|
pad_attention_mask = torch.cat([encoder_attention_mask[i_p::num_stages], pad_attention_mask], dim=1) |
|
|
|
if is_sequence_parallel_initialized(): |
|
sp_group = get_sequence_parallel_group() |
|
sp_group_size = get_sequence_parallel_world_size() |
|
pad_attention_mask = all_to_all(pad_attention_mask.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0) |
|
pad_attention_mask = pad_attention_mask.squeeze(2) |
|
|
|
seqlens_in_batch = pad_attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(pad_attention_mask.flatten(), as_tuple=False).flatten() |
|
|
|
indices_list.append( |
|
{ |
|
'indices': indices, |
|
'seqlens_in_batch': seqlens_in_batch, |
|
} |
|
) |
|
encoder_attention_mask = indices_list |
|
else: |
|
assert encoder_attention_mask.shape[1] == encoder_hidden_length |
|
real_batch_size = encoder_attention_mask.shape[0] |
|
|
|
text_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, encoder_hidden_length) |
|
text_ids = text_ids.to(device) |
|
text_ids[encoder_attention_mask == 0] = 0 |
|
|
|
|
|
image_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, max(hidden_length)) |
|
image_ids = image_ids.to(device) |
|
image_ids_list = [] |
|
for i_p, length in enumerate(hidden_length): |
|
image_ids_list.append(image_ids[i_p::num_stages][:, :length]) |
|
|
|
if is_sequence_parallel_initialized(): |
|
sp_group = get_sequence_parallel_group() |
|
sp_group_size = get_sequence_parallel_world_size() |
|
text_ids = all_to_all(text_ids.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0).squeeze(2) |
|
image_ids_list = [all_to_all(image_ids_.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0).squeeze(2) for image_ids_ in image_ids_list] |
|
|
|
attention_mask = [] |
|
for i_p in range(len(hidden_length)): |
|
image_ids = image_ids_list[i_p] |
|
token_ids = torch.cat([text_ids[i_p::num_stages], image_ids], dim=1) |
|
stage_attention_mask = rearrange(token_ids, 'b i -> b 1 i 1') == rearrange(token_ids, 'b j -> b 1 1 j') |
|
if self.use_temporal_causal: |
|
input_order_ids = input_ids_list[i_p].squeeze(2) |
|
temporal_causal_mask = rearrange(input_order_ids, 'b i -> b 1 i 1') >= rearrange(input_order_ids, 'b j -> b 1 1 j') |
|
stage_attention_mask = stage_attention_mask & temporal_causal_mask |
|
attention_mask.append(stage_attention_mask) |
|
|
|
return hidden_states, hidden_length, temp_list, height_list, width_list, trainable_token_list, encoder_attention_mask, attention_mask, image_rotary_emb |
|
|
|
def split_output(self, batch_hidden_states, hidden_length, temps, heights, widths, trainable_token_list): |
|
|
|
batch_size = batch_hidden_states.shape[0] |
|
output_hidden_list = [] |
|
batch_hidden_states = torch.split(batch_hidden_states, hidden_length, dim=1) |
|
|
|
if is_sequence_parallel_initialized(): |
|
sp_group_size = get_sequence_parallel_world_size() |
|
batch_size = batch_size // sp_group_size |
|
|
|
for i_p, length in enumerate(hidden_length): |
|
width, height, temp = widths[i_p], heights[i_p], temps[i_p] |
|
trainable_token_num = trainable_token_list[i_p] |
|
hidden_states = batch_hidden_states[i_p] |
|
|
|
if is_sequence_parallel_initialized(): |
|
sp_group = get_sequence_parallel_group() |
|
sp_group_size = get_sequence_parallel_world_size() |
|
hidden_states = all_to_all(hidden_states, sp_group, sp_group_size, scatter_dim=0, gather_dim=1) |
|
|
|
|
|
hidden_states = hidden_states[:, -trainable_token_num:] |
|
|
|
|
|
hidden_states = hidden_states.reshape( |
|
shape=(batch_size, temp, height, width, self.patch_size, self.patch_size, self.out_channels) |
|
) |
|
hidden_states = rearrange(hidden_states, "b t h w p1 p2 c -> b t (h p1) (w p2) c") |
|
hidden_states = rearrange(hidden_states, "b t h w c -> b c t h w") |
|
output_hidden_list.append(hidden_states) |
|
|
|
return output_hidden_list |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
encoder_attention_mask: torch.FloatTensor = None, |
|
pooled_projections: torch.FloatTensor = None, |
|
timestep_ratio: torch.FloatTensor = None, |
|
): |
|
|
|
temb = self.time_text_embed(timestep_ratio, pooled_projections) |
|
encoder_hidden_states = self.context_embedder(encoder_hidden_states) |
|
encoder_hidden_length = encoder_hidden_states.shape[1] |
|
|
|
|
|
hidden_states, hidden_length, temps, heights, widths, trainable_token_list, encoder_attention_mask, \ |
|
attention_mask, image_rotary_emb = self.merge_input(sample, encoder_hidden_length, encoder_attention_mask) |
|
|
|
|
|
if is_sequence_parallel_initialized(): |
|
sp_group = get_sequence_parallel_group() |
|
sp_group_size = get_sequence_parallel_world_size() |
|
|
|
|
|
batch_hidden_states = [] |
|
for i_p, hidden_states_ in enumerate(hidden_states): |
|
assert hidden_states_.shape[1] % sp_group_size == 0, "The sequence length should be divided by sequence parallel size" |
|
hidden_states_ = all_to_all(hidden_states_, sp_group, sp_group_size, scatter_dim=1, gather_dim=0) |
|
hidden_length[i_p] = hidden_length[i_p] // sp_group_size |
|
batch_hidden_states.append(hidden_states_) |
|
|
|
|
|
hidden_states = torch.cat(batch_hidden_states, dim=1) |
|
encoder_hidden_states = all_to_all(encoder_hidden_states, sp_group, sp_group_size, scatter_dim=1, gather_dim=0) |
|
temb = all_to_all(temb.unsqueeze(1).repeat(1, sp_group_size, 1), sp_group, sp_group_size, scatter_dim=1, gather_dim=0) |
|
temb = temb.squeeze(1) |
|
else: |
|
hidden_states = torch.cat(hidden_states, dim=1) |
|
|
|
|
|
for i_b, block in enumerate(self.transformer_blocks): |
|
if self.training and self.gradient_checkpointing and (i_b >= 2): |
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
hidden_states, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
temb, |
|
attention_mask, |
|
hidden_length, |
|
image_rotary_emb, |
|
**ckpt_kwargs, |
|
) |
|
|
|
else: |
|
encoder_hidden_states, hidden_states = block( |
|
hidden_states=hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
temb=temb, |
|
attention_mask=attention_mask, |
|
hidden_length=hidden_length, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
|
|
hidden_states = self.norm_out(hidden_states, temb, hidden_length=hidden_length) |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
output = self.split_output(hidden_states, hidden_length, temps, heights, widths, trainable_token_list) |
|
|
|
return output |
|
|