File size: 23,017 Bytes
f0533a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import torch
import torch.nn as nn
import os
import torch.nn.functional as F
from einops import rearrange
from diffusers.utils.torch_utils import randn_tensor
from diffusers.models.modeling_utils import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import is_torch_version
from typing import Any, Callable, Dict, List, Optional, Union
from tqdm import tqdm
from .modeling_embedding import PatchEmbed3D, CombinedTimestepConditionEmbeddings
from .modeling_normalization import AdaLayerNormContinuous
from .modeling_mmdit_block import JointTransformerBlock
from trainer_misc import (
is_sequence_parallel_initialized,
get_sequence_parallel_group,
get_sequence_parallel_world_size,
get_sequence_parallel_rank,
all_to_all,
)
from IPython import embed
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
assert dim % 2 == 0, "The dimension must be even."
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
batch_size, seq_length = pos.shape
out = torch.einsum("...n,d->...nd", pos, omega)
cos_out = torch.cos(out)
sin_out = torch.sin(out)
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
return out.float()
class EmbedNDRoPE(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: List[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(2)
class PyramidDiffusionMMDiT(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: int = 128,
patch_size: int = 2,
in_channels: int = 16,
num_layers: int = 24,
attention_head_dim: int = 64,
num_attention_heads: int = 24,
caption_projection_dim: int = 1152,
pooled_projection_dim: int = 2048,
pos_embed_max_size: int = 192,
max_num_frames: int = 200,
qk_norm: str = 'rms_norm',
pos_embed_type: str = 'rope',
temp_pos_embed_type: str = 'sincos',
joint_attention_dim: int = 4096,
use_gradient_checkpointing: bool = False,
use_flash_attn: bool = True,
use_temporal_causal: bool = False,
use_t5_mask: bool = False,
add_temp_pos_embed: bool = False,
interp_condition_pos: bool = False,
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
assert temp_pos_embed_type in ['rope', 'sincos']
# The input latent embeder, using the name pos_embed to remain the same with SD#
self.pos_embed = PatchEmbed3D(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=self.inner_dim,
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
max_num_frames=max_num_frames,
pos_embed_type=pos_embed_type,
temp_pos_embed_type=temp_pos_embed_type,
add_temp_pos_embed=add_temp_pos_embed,
interp_condition_pos=interp_condition_pos,
)
# The RoPE EMbedding
if pos_embed_type == 'rope':
self.rope_embed = EmbedNDRoPE(self.inner_dim, 10000, axes_dim=[16, 24, 24])
else:
self.rope_embed = None
if temp_pos_embed_type == 'rope':
self.temp_rope_embed = EmbedNDRoPE(self.inner_dim, 10000, axes_dim=[attention_head_dim])
else:
self.temp_rope_embed = None
self.time_text_embed = CombinedTimestepConditionEmbeddings(
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim,
)
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
self.transformer_blocks = nn.ModuleList(
[
JointTransformerBlock(
dim=self.inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=self.inner_dim,
qk_norm=qk_norm,
context_pre_only=i == num_layers - 1,
use_flash_attn=use_flash_attn,
)
for i in range(num_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = use_gradient_checkpointing
self.patch_size = patch_size
self.use_flash_attn = use_flash_attn
self.use_temporal_causal = use_temporal_causal
self.pos_embed_type = pos_embed_type
self.temp_pos_embed_type = temp_pos_embed_type
self.add_temp_pos_embed = add_temp_pos_embed
if self.use_temporal_causal:
print("Using temporal causal attention")
assert self.use_flash_attn is False, "The flash attention does not support temporal causal"
if interp_condition_pos:
print("We interp the position embedding of condition latents")
# init weights
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.pos_embed.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.pos_embed.proj.bias, 0)
# Initialize all the conditioning to normal init
nn.init.normal_(self.time_text_embed.timestep_embedder.linear_1.weight, std=0.02)
nn.init.normal_(self.time_text_embed.timestep_embedder.linear_2.weight, std=0.02)
nn.init.normal_(self.time_text_embed.text_embedder.linear_1.weight, std=0.02)
nn.init.normal_(self.time_text_embed.text_embedder.linear_2.weight, std=0.02)
nn.init.normal_(self.context_embedder.weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.transformer_blocks:
nn.init.constant_(block.norm1.linear.weight, 0)
nn.init.constant_(block.norm1.linear.bias, 0)
nn.init.constant_(block.norm1_context.linear.weight, 0)
nn.init.constant_(block.norm1_context.linear.bias, 0)
# Zero-out output layers:
nn.init.constant_(self.norm_out.linear.weight, 0)
nn.init.constant_(self.norm_out.linear.bias, 0)
nn.init.constant_(self.proj_out.weight, 0)
nn.init.constant_(self.proj_out.bias, 0)
@torch.no_grad()
def _prepare_latent_image_ids(self, batch_size, temp, height, width, device):
latent_image_ids = torch.zeros(temp, height, width, 3)
latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(temp)[:, None, None]
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[None, :, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, None, :]
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1)
latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c')
return latent_image_ids.to(device=device)
@torch.no_grad()
def _prepare_pyramid_latent_image_ids(self, batch_size, temp_list, height_list, width_list, device):
base_width = width_list[-1]; base_height = height_list[-1]
assert base_width == max(width_list)
assert base_height == max(height_list)
image_ids_list = []
for temp, height, width in zip(temp_list, height_list, width_list):
latent_image_ids = torch.zeros(temp, height, width, 3)
if height != base_height:
height_pos = F.interpolate(torch.arange(base_height)[None, None, :].float(), height, mode='linear').squeeze(0, 1)
else:
height_pos = torch.arange(base_height).float()
if width != base_width:
width_pos = F.interpolate(torch.arange(base_width)[None, None, :].float(), width, mode='linear').squeeze(0, 1)
else:
width_pos = torch.arange(base_width).float()
latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(temp)[:, None, None]
latent_image_ids[..., 1] = latent_image_ids[..., 1] + height_pos[None, :, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + width_pos[None, None, :]
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1)
latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c').to(device)
image_ids_list.append(latent_image_ids)
return image_ids_list
@torch.no_grad()
def _prepare_temporal_rope_ids(self, batch_size, temp, height, width, device, start_time_stamp=0):
latent_image_ids = torch.zeros(temp, height, width, 1)
latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(start_time_stamp, start_time_stamp + temp)[:, None, None]
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1)
latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c')
return latent_image_ids.to(device=device)
@torch.no_grad()
def _prepare_pyramid_temporal_rope_ids(self, sample, batch_size, device):
image_ids_list = []
for i_b, sample_ in enumerate(sample):
if not isinstance(sample_, list):
sample_ = [sample_]
cur_image_ids = []
start_time_stamp = 0
for clip_ in sample_:
_, _, temp, height, width = clip_.shape
height = height // self.patch_size
width = width // self.patch_size
cur_image_ids.append(self._prepare_temporal_rope_ids(batch_size, temp, height, width, device, start_time_stamp=start_time_stamp))
start_time_stamp += temp
cur_image_ids = torch.cat(cur_image_ids, dim=1)
image_ids_list.append(cur_image_ids)
return image_ids_list
def merge_input(self, sample, encoder_hidden_length, encoder_attention_mask):
"""
Merge the input video with different resolutions into one sequence
Sample: From low resolution to high resolution
"""
if isinstance(sample[0], list):
device = sample[0][-1].device
pad_batch_size = sample[0][-1].shape[0]
else:
device = sample[0].device
pad_batch_size = sample[0].shape[0]
num_stages = len(sample)
height_list = [];width_list = [];temp_list = []
trainable_token_list = []
for i_b, sample_ in enumerate(sample):
if isinstance(sample_, list):
sample_ = sample_[-1]
_, _, temp, height, width = sample_.shape
height = height // self.patch_size
width = width // self.patch_size
temp_list.append(temp)
height_list.append(height)
width_list.append(width)
trainable_token_list.append(height * width * temp)
# prepare the RoPE embedding if needed
if self.pos_embed_type == 'rope':
# TODO: support the 3D Rope for video
raise NotImplementedError("Not compatible with video generation now")
text_ids = torch.zeros(pad_batch_size, encoder_hidden_length, 3).to(device=device)
image_ids_list = self._prepare_pyramid_latent_image_ids(pad_batch_size, temp_list, height_list, width_list, device)
input_ids_list = [torch.cat([text_ids, image_ids], dim=1) for image_ids in image_ids_list]
image_rotary_emb = [self.rope_embed(input_ids) for input_ids in input_ids_list] # [bs, seq_len, 1, head_dim // 2, 2, 2]
else:
if self.temp_pos_embed_type == 'rope' and self.add_temp_pos_embed:
image_ids_list = self._prepare_pyramid_temporal_rope_ids(sample, pad_batch_size, device)
text_ids = torch.zeros(pad_batch_size, encoder_attention_mask.shape[1], 1).to(device=device)
input_ids_list = [torch.cat([text_ids, image_ids], dim=1) for image_ids in image_ids_list]
image_rotary_emb = [self.temp_rope_embed(input_ids) for input_ids in input_ids_list] # [bs, seq_len, 1, head_dim // 2, 2, 2]
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
image_rotary_emb = [all_to_all(x_.repeat(1, 1, sp_group_size, 1, 1, 1), sp_group, sp_group_size, scatter_dim=2, gather_dim=0) for x_ in image_rotary_emb]
input_ids_list = [all_to_all(input_ids.repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0) for input_ids in input_ids_list]
else:
image_rotary_emb = None
hidden_states = self.pos_embed(sample) # hidden states is a list of [b c t h w] b = real_b // num_stages
hidden_length = []
for i_b in range(num_stages):
hidden_length.append(hidden_states[i_b].shape[1])
# prepare the attention mask
if self.use_flash_attn:
attention_mask = None
indices_list = []
for i_p, length in enumerate(hidden_length):
pad_attention_mask = torch.ones((pad_batch_size, length), dtype=encoder_attention_mask.dtype).to(device)
pad_attention_mask = torch.cat([encoder_attention_mask[i_p::num_stages], pad_attention_mask], dim=1)
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
pad_attention_mask = all_to_all(pad_attention_mask.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0)
pad_attention_mask = pad_attention_mask.squeeze(2)
seqlens_in_batch = pad_attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(pad_attention_mask.flatten(), as_tuple=False).flatten()
indices_list.append(
{
'indices': indices,
'seqlens_in_batch': seqlens_in_batch,
}
)
encoder_attention_mask = indices_list
else:
assert encoder_attention_mask.shape[1] == encoder_hidden_length
real_batch_size = encoder_attention_mask.shape[0]
# prepare text ids
text_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, encoder_hidden_length)
text_ids = text_ids.to(device)
text_ids[encoder_attention_mask == 0] = 0
# prepare image ids
image_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, max(hidden_length))
image_ids = image_ids.to(device)
image_ids_list = []
for i_p, length in enumerate(hidden_length):
image_ids_list.append(image_ids[i_p::num_stages][:, :length])
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
text_ids = all_to_all(text_ids.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0).squeeze(2)
image_ids_list = [all_to_all(image_ids_.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0).squeeze(2) for image_ids_ in image_ids_list]
attention_mask = []
for i_p in range(len(hidden_length)):
image_ids = image_ids_list[i_p]
token_ids = torch.cat([text_ids[i_p::num_stages], image_ids], dim=1)
stage_attention_mask = rearrange(token_ids, 'b i -> b 1 i 1') == rearrange(token_ids, 'b j -> b 1 1 j') # [bs, 1, q_len, k_len]
if self.use_temporal_causal:
input_order_ids = input_ids_list[i_p].squeeze(2)
temporal_causal_mask = rearrange(input_order_ids, 'b i -> b 1 i 1') >= rearrange(input_order_ids, 'b j -> b 1 1 j')
stage_attention_mask = stage_attention_mask & temporal_causal_mask
attention_mask.append(stage_attention_mask)
return hidden_states, hidden_length, temp_list, height_list, width_list, trainable_token_list, encoder_attention_mask, attention_mask, image_rotary_emb
def split_output(self, batch_hidden_states, hidden_length, temps, heights, widths, trainable_token_list):
# To split the hidden states
batch_size = batch_hidden_states.shape[0]
output_hidden_list = []
batch_hidden_states = torch.split(batch_hidden_states, hidden_length, dim=1)
if is_sequence_parallel_initialized():
sp_group_size = get_sequence_parallel_world_size()
batch_size = batch_size // sp_group_size
for i_p, length in enumerate(hidden_length):
width, height, temp = widths[i_p], heights[i_p], temps[i_p]
trainable_token_num = trainable_token_list[i_p]
hidden_states = batch_hidden_states[i_p]
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
hidden_states = all_to_all(hidden_states, sp_group, sp_group_size, scatter_dim=0, gather_dim=1)
# only the trainable token are taking part in loss computation
hidden_states = hidden_states[:, -trainable_token_num:]
# unpatchify
hidden_states = hidden_states.reshape(
shape=(batch_size, temp, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = rearrange(hidden_states, "b t h w p1 p2 c -> b t (h p1) (w p2) c")
hidden_states = rearrange(hidden_states, "b t h w c -> b c t h w")
output_hidden_list.append(hidden_states)
return output_hidden_list
def forward(
self,
sample: torch.FloatTensor, # [num_stages]
encoder_hidden_states: torch.FloatTensor = None,
encoder_attention_mask: torch.FloatTensor = None,
pooled_projections: torch.FloatTensor = None,
timestep_ratio: torch.FloatTensor = None,
):
# Get the timestep embedding
temb = self.time_text_embed(timestep_ratio, pooled_projections)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
encoder_hidden_length = encoder_hidden_states.shape[1]
# Get the input sequence
hidden_states, hidden_length, temps, heights, widths, trainable_token_list, encoder_attention_mask, \
attention_mask, image_rotary_emb = self.merge_input(sample, encoder_hidden_length, encoder_attention_mask)
# split the long latents if necessary
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
# sync the input hidden states
batch_hidden_states = []
for i_p, hidden_states_ in enumerate(hidden_states):
assert hidden_states_.shape[1] % sp_group_size == 0, "The sequence length should be divided by sequence parallel size"
hidden_states_ = all_to_all(hidden_states_, sp_group, sp_group_size, scatter_dim=1, gather_dim=0)
hidden_length[i_p] = hidden_length[i_p] // sp_group_size
batch_hidden_states.append(hidden_states_)
# sync the encoder hidden states
hidden_states = torch.cat(batch_hidden_states, dim=1)
encoder_hidden_states = all_to_all(encoder_hidden_states, sp_group, sp_group_size, scatter_dim=1, gather_dim=0)
temb = all_to_all(temb.unsqueeze(1).repeat(1, sp_group_size, 1), sp_group, sp_group_size, scatter_dim=1, gather_dim=0)
temb = temb.squeeze(1)
else:
hidden_states = torch.cat(hidden_states, dim=1)
# print(hidden_length)
for i_b, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing and (i_b >= 2):
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
encoder_attention_mask,
temb,
attention_mask,
hidden_length,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
temb=temb,
attention_mask=attention_mask,
hidden_length=hidden_length,
image_rotary_emb=image_rotary_emb,
)
hidden_states = self.norm_out(hidden_states, temb, hidden_length=hidden_length)
hidden_states = self.proj_out(hidden_states)
output = self.split_output(hidden_states, hidden_length, temps, heights, widths, trainable_token_list)
return output
|