wlmov / pyramid_dit /modeling_embedding.py
multimodalart's picture
Upload 33 files
f0533a5 verified
raw
history blame
15.6 kB
from typing import Any, Dict, Optional, Union
import torch
import torch.nn as nn
import numpy as np
import math
from diffusers.models.activations import get_activation
from einops import rearrange
def get_1d_sincos_pos_embed(
embed_dim, num_frames, cls_token=False, extra_tokens=0,
):
t = np.arange(num_frames, dtype=np.float32)
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, t) # (T, D)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed(
embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
"""
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
if isinstance(grid_size, int):
grid_size = (grid_size, grid_size)
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
)
return t_emb
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
sample_proj_bias=True,
):
super().__init__()
self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)
self.act = get_activation(act_fn)
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim, sample_proj_bias)
def forward(self, sample):
sample = self.linear_1(sample)
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class TextProjection(nn.Module):
def __init__(self, in_features, hidden_size, act_fn="silu"):
super().__init__()
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
self.act_1 = get_activation(act_fn)
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class CombinedTimestepConditionEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.text_embedder = TextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(self, timestep, pooled_projection):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
pooled_projections = self.text_embedder(pooled_projection)
conditioning = timesteps_emb + pooled_projections
return conditioning
class CombinedTimestepEmbeddings(nn.Module):
def __init__(self, embedding_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
def forward(self, timestep):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj) # (N, D)
return timesteps_emb
class PatchEmbed3D(nn.Module):
"""Support the 3D Tensor input"""
def __init__(
self,
height=128,
width=128,
patch_size=2,
in_channels=16,
embed_dim=1536,
layer_norm=False,
bias=True,
interpolation_scale=1,
pos_embed_type="sincos",
temp_pos_embed_type='rope',
pos_embed_max_size=192, # For SD3 cropping
max_num_frames=64,
add_temp_pos_embed=False,
interp_condition_pos=False,
):
super().__init__()
num_patches = (height // patch_size) * (width // patch_size)
self.layer_norm = layer_norm
self.pos_embed_max_size = pos_embed_max_size
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
if layer_norm:
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
else:
self.norm = None
self.patch_size = patch_size
self.height, self.width = height // patch_size, width // patch_size
self.base_size = height // patch_size
self.interpolation_scale = interpolation_scale
self.add_temp_pos_embed = add_temp_pos_embed
# Calculate positional embeddings based on max size or default
if pos_embed_max_size:
grid_size = pos_embed_max_size
else:
grid_size = int(num_patches**0.5)
if pos_embed_type is None:
self.pos_embed = None
elif pos_embed_type == "sincos":
pos_embed = get_2d_sincos_pos_embed(
embed_dim, grid_size, base_size=self.base_size, interpolation_scale=self.interpolation_scale
)
persistent = True if pos_embed_max_size else False
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=persistent)
if add_temp_pos_embed and temp_pos_embed_type == 'sincos':
time_pos_embed = get_1d_sincos_pos_embed(embed_dim, max_num_frames)
self.register_buffer("temp_pos_embed", torch.from_numpy(time_pos_embed).float().unsqueeze(0), persistent=True)
elif pos_embed_type == "rope":
print("Using the rotary position embedding")
else:
raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")
self.pos_embed_type = pos_embed_type
self.temp_pos_embed_type = temp_pos_embed_type
self.interp_condition_pos = interp_condition_pos
def cropped_pos_embed(self, height, width, ori_height, ori_width):
"""Crops positional embeddings for SD3 compatibility."""
if self.pos_embed_max_size is None:
raise ValueError("`pos_embed_max_size` must be set for cropping.")
height = height // self.patch_size
width = width // self.patch_size
ori_height = ori_height // self.patch_size
ori_width = ori_width // self.patch_size
assert ori_height >= height, "The ori_height needs >= height"
assert ori_width >= width, "The ori_width needs >= width"
if height > self.pos_embed_max_size:
raise ValueError(
f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
)
if width > self.pos_embed_max_size:
raise ValueError(
f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
)
if self.interp_condition_pos:
top = (self.pos_embed_max_size - ori_height) // 2
left = (self.pos_embed_max_size - ori_width) // 2
spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
spatial_pos_embed = spatial_pos_embed[:, top : top + ori_height, left : left + ori_width, :] # [b h w c]
if ori_height != height or ori_width != width:
spatial_pos_embed = spatial_pos_embed.permute(0, 3, 1, 2)
spatial_pos_embed = torch.nn.functional.interpolate(spatial_pos_embed, size=(height, width), mode='bilinear')
spatial_pos_embed = spatial_pos_embed.permute(0, 2, 3, 1)
else:
top = (self.pos_embed_max_size - height) // 2
left = (self.pos_embed_max_size - width) // 2
spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
return spatial_pos_embed
def forward_func(self, latent, time_index=0, ori_height=None, ori_width=None):
if self.pos_embed_max_size is not None:
height, width = latent.shape[-2:]
else:
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
bs = latent.shape[0]
temp = latent.shape[2]
latent = rearrange(latent, 'b c t h w -> (b t) c h w')
latent = self.proj(latent)
latent = latent.flatten(2).transpose(1, 2) # (BT)CHW -> (BT)NC
if self.layer_norm:
latent = self.norm(latent)
if self.pos_embed_type == 'sincos':
# Spatial position embedding, Interpolate or crop positional embeddings as needed
if self.pos_embed_max_size:
pos_embed = self.cropped_pos_embed(height, width, ori_height, ori_width)
else:
raise NotImplementedError("Not implemented sincos pos embed without sd3 max pos crop")
if self.height != height or self.width != width:
pos_embed = get_2d_sincos_pos_embed(
embed_dim=self.pos_embed.shape[-1],
grid_size=(height, width),
base_size=self.base_size,
interpolation_scale=self.interpolation_scale,
)
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).to(latent.device)
else:
pos_embed = self.pos_embed
if self.add_temp_pos_embed and self.temp_pos_embed_type == 'sincos':
latent_dtype = latent.dtype
latent = latent + pos_embed
latent = rearrange(latent, '(b t) n c -> (b n) t c', t=temp)
latent = latent + self.temp_pos_embed[:, time_index:time_index + temp, :]
latent = latent.to(latent_dtype)
latent = rearrange(latent, '(b n) t c -> b t n c', b=bs)
else:
latent = (latent + pos_embed).to(latent.dtype)
latent = rearrange(latent, '(b t) n c -> b t n c', b=bs, t=temp)
else:
assert self.pos_embed_type == "rope", "Only supporting the sincos and rope embedding"
latent = rearrange(latent, '(b t) n c -> b t n c', b=bs, t=temp)
return latent
def forward(self, latent):
"""
Arguments:
past_condition_latents (Torch.FloatTensor): The past latent during the generation
flatten_input (bool): True indicate flatten the latent into 1D sequence
"""
if isinstance(latent, list):
output_list = []
for latent_ in latent:
if not isinstance(latent_, list):
latent_ = [latent_]
output_latent = []
time_index = 0
ori_height, ori_width = latent_[-1].shape[-2:]
for each_latent in latent_:
hidden_state = self.forward_func(each_latent, time_index=time_index, ori_height=ori_height, ori_width=ori_width)
time_index += each_latent.shape[2]
hidden_state = rearrange(hidden_state, "b t n c -> b (t n) c")
output_latent.append(hidden_state)
output_latent = torch.cat(output_latent, dim=1)
output_list.append(output_latent)
return output_list
else:
hidden_states = self.forward_func(latent)
hidden_states = rearrange(hidden_states, "b t n c -> b (t n) c")
return hidden_states