File size: 15,556 Bytes
f0533a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
from typing import Any, Dict, Optional, Union
import torch
import torch.nn as nn
import numpy as np
import math
from diffusers.models.activations import get_activation
from einops import rearrange
def get_1d_sincos_pos_embed(
embed_dim, num_frames, cls_token=False, extra_tokens=0,
):
t = np.arange(num_frames, dtype=np.float32)
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, t) # (T, D)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed(
embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
"""
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
if isinstance(grid_size, int):
grid_size = (grid_size, grid_size)
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
)
return t_emb
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
sample_proj_bias=True,
):
super().__init__()
self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)
self.act = get_activation(act_fn)
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim, sample_proj_bias)
def forward(self, sample):
sample = self.linear_1(sample)
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class TextProjection(nn.Module):
def __init__(self, in_features, hidden_size, act_fn="silu"):
super().__init__()
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
self.act_1 = get_activation(act_fn)
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class CombinedTimestepConditionEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.text_embedder = TextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(self, timestep, pooled_projection):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
pooled_projections = self.text_embedder(pooled_projection)
conditioning = timesteps_emb + pooled_projections
return conditioning
class CombinedTimestepEmbeddings(nn.Module):
def __init__(self, embedding_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
def forward(self, timestep):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj) # (N, D)
return timesteps_emb
class PatchEmbed3D(nn.Module):
"""Support the 3D Tensor input"""
def __init__(
self,
height=128,
width=128,
patch_size=2,
in_channels=16,
embed_dim=1536,
layer_norm=False,
bias=True,
interpolation_scale=1,
pos_embed_type="sincos",
temp_pos_embed_type='rope',
pos_embed_max_size=192, # For SD3 cropping
max_num_frames=64,
add_temp_pos_embed=False,
interp_condition_pos=False,
):
super().__init__()
num_patches = (height // patch_size) * (width // patch_size)
self.layer_norm = layer_norm
self.pos_embed_max_size = pos_embed_max_size
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
if layer_norm:
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
else:
self.norm = None
self.patch_size = patch_size
self.height, self.width = height // patch_size, width // patch_size
self.base_size = height // patch_size
self.interpolation_scale = interpolation_scale
self.add_temp_pos_embed = add_temp_pos_embed
# Calculate positional embeddings based on max size or default
if pos_embed_max_size:
grid_size = pos_embed_max_size
else:
grid_size = int(num_patches**0.5)
if pos_embed_type is None:
self.pos_embed = None
elif pos_embed_type == "sincos":
pos_embed = get_2d_sincos_pos_embed(
embed_dim, grid_size, base_size=self.base_size, interpolation_scale=self.interpolation_scale
)
persistent = True if pos_embed_max_size else False
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=persistent)
if add_temp_pos_embed and temp_pos_embed_type == 'sincos':
time_pos_embed = get_1d_sincos_pos_embed(embed_dim, max_num_frames)
self.register_buffer("temp_pos_embed", torch.from_numpy(time_pos_embed).float().unsqueeze(0), persistent=True)
elif pos_embed_type == "rope":
print("Using the rotary position embedding")
else:
raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")
self.pos_embed_type = pos_embed_type
self.temp_pos_embed_type = temp_pos_embed_type
self.interp_condition_pos = interp_condition_pos
def cropped_pos_embed(self, height, width, ori_height, ori_width):
"""Crops positional embeddings for SD3 compatibility."""
if self.pos_embed_max_size is None:
raise ValueError("`pos_embed_max_size` must be set for cropping.")
height = height // self.patch_size
width = width // self.patch_size
ori_height = ori_height // self.patch_size
ori_width = ori_width // self.patch_size
assert ori_height >= height, "The ori_height needs >= height"
assert ori_width >= width, "The ori_width needs >= width"
if height > self.pos_embed_max_size:
raise ValueError(
f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
)
if width > self.pos_embed_max_size:
raise ValueError(
f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
)
if self.interp_condition_pos:
top = (self.pos_embed_max_size - ori_height) // 2
left = (self.pos_embed_max_size - ori_width) // 2
spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
spatial_pos_embed = spatial_pos_embed[:, top : top + ori_height, left : left + ori_width, :] # [b h w c]
if ori_height != height or ori_width != width:
spatial_pos_embed = spatial_pos_embed.permute(0, 3, 1, 2)
spatial_pos_embed = torch.nn.functional.interpolate(spatial_pos_embed, size=(height, width), mode='bilinear')
spatial_pos_embed = spatial_pos_embed.permute(0, 2, 3, 1)
else:
top = (self.pos_embed_max_size - height) // 2
left = (self.pos_embed_max_size - width) // 2
spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
return spatial_pos_embed
def forward_func(self, latent, time_index=0, ori_height=None, ori_width=None):
if self.pos_embed_max_size is not None:
height, width = latent.shape[-2:]
else:
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
bs = latent.shape[0]
temp = latent.shape[2]
latent = rearrange(latent, 'b c t h w -> (b t) c h w')
latent = self.proj(latent)
latent = latent.flatten(2).transpose(1, 2) # (BT)CHW -> (BT)NC
if self.layer_norm:
latent = self.norm(latent)
if self.pos_embed_type == 'sincos':
# Spatial position embedding, Interpolate or crop positional embeddings as needed
if self.pos_embed_max_size:
pos_embed = self.cropped_pos_embed(height, width, ori_height, ori_width)
else:
raise NotImplementedError("Not implemented sincos pos embed without sd3 max pos crop")
if self.height != height or self.width != width:
pos_embed = get_2d_sincos_pos_embed(
embed_dim=self.pos_embed.shape[-1],
grid_size=(height, width),
base_size=self.base_size,
interpolation_scale=self.interpolation_scale,
)
pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).to(latent.device)
else:
pos_embed = self.pos_embed
if self.add_temp_pos_embed and self.temp_pos_embed_type == 'sincos':
latent_dtype = latent.dtype
latent = latent + pos_embed
latent = rearrange(latent, '(b t) n c -> (b n) t c', t=temp)
latent = latent + self.temp_pos_embed[:, time_index:time_index + temp, :]
latent = latent.to(latent_dtype)
latent = rearrange(latent, '(b n) t c -> b t n c', b=bs)
else:
latent = (latent + pos_embed).to(latent.dtype)
latent = rearrange(latent, '(b t) n c -> b t n c', b=bs, t=temp)
else:
assert self.pos_embed_type == "rope", "Only supporting the sincos and rope embedding"
latent = rearrange(latent, '(b t) n c -> b t n c', b=bs, t=temp)
return latent
def forward(self, latent):
"""
Arguments:
past_condition_latents (Torch.FloatTensor): The past latent during the generation
flatten_input (bool): True indicate flatten the latent into 1D sequence
"""
if isinstance(latent, list):
output_list = []
for latent_ in latent:
if not isinstance(latent_, list):
latent_ = [latent_]
output_latent = []
time_index = 0
ori_height, ori_width = latent_[-1].shape[-2:]
for each_latent in latent_:
hidden_state = self.forward_func(each_latent, time_index=time_index, ori_height=ori_height, ori_width=ori_width)
time_index += each_latent.shape[2]
hidden_state = rearrange(hidden_state, "b t n c -> b (t n) c")
output_latent.append(hidden_state)
output_latent = torch.cat(output_latent, dim=1)
output_list.append(output_latent)
return output_list
else:
hidden_states = self.forward_func(latent)
hidden_states = rearrange(hidden_states, "b t n c -> b (t n) c")
return hidden_states |