shop-intel / app.py
sam2ai's picture
Update app.py
0265953 verified
from langchain_community.vectorstores import Qdrant
from langchain_together import Together
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from qdrant_client import QdrantClient
from langchain_core.prompts import PromptTemplate
import os
from dotenv import load_dotenv
from langchain_community.vectorstores import Qdrant
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.docstore.document import Document
import pandas as pd
# formatting the data for ingestion
all_prods_df = pd.read_csv("data/cleaned_CSVIndian10000.csv")
all_prods_df = all_prods_df.fillna("")
product_metadata = all_prods_df.to_dict(orient="index")
texts = [str(v['name']) + "\n" + str(v['product_desc']) for k, v in product_metadata.items()]
metadatas = list(product_metadata.values())
docs = [Document(page_content=txt, metadata={"source": meta}) for txt, meta in zip(texts, metadatas)]
print("Data loaded.........")
# load the embedding model
model_name = "BAAI/bge-small-en-v1.5"
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
embeddings = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
print("Embedding model loaded.........")
# load the vector store
url="https://42bc5a86-aaa1-4e0f-96bb-5a77988b0269.us-east4-0.gcp.cloud.qdrant.io"
collection_name = "shopintel100v3"
api_key = "OLP6I0L5QQuQdtpvQPmUjyl-DNbjSsJqyrkiH51dgiGAaqW1TzcJvA"
vector_store = Qdrant.from_documents(
docs,
embeddings,
# location=":memory:",
url=url,
prefer_grpc=True,
api_key=api_key,
collection_name=collection_name,
force_recreate=True
)
print("Vector store loaded.........")
load_dotenv()
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
print("api key: ", TOGETHER_API_KEY, type(TOGETHER_API_KEY))
# load the embedding model
# model_name = "BAAI/bge-large-en"
# model_kwargs = {"device": "cpu"}
# encode_kwargs = {"normalize_embeddings": True}
# embeddings = HuggingFaceBgeEmbeddings(
# model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs
# )
# print("embeddings loaded.............")
# url = "http://localhost:6333"
# collection_name = "shopintel100v3"
# client = QdrantClient(url=url, prefer_grpc=False)
# vector_store = Qdrant(
# client=client,
# collection_name=collection_name,
# embeddings=embeddings
# )
print("qdrant embeddings from docker were loaded.............")
llm = Together(
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature=0.2,
max_tokens=5000,
top_k=50,
together_api_key=TOGETHER_API_KEY
)
# query = "ASUS VivoBook 15 (2021)"
# result = vector_store.similarity_search_with_score(query=query, k=5)
# for i in result:
# doc, score = i
# print({"score": score, "content": doc.page_content, "metadata": doc.metadata["source"]})
# print("---------------------------------")
# function to retrieve products from qdrant
def retrieve_product(user_input, vector_store, k = 10):
result = vector_store.similarity_search_with_score(
query=user_input,
k=k
)
return result
# function to create context from user query
def create_context(user_input, vector_store):
result = retrieve_product(user_input, vector_store)
context = ""
for index, value in enumerate(result):
product = value
product_title = product[0].page_content # Extracting the page_content for each result which is a string
product_metadata = product[0].metadata["source"] # Extracting the metadata for each result which is a dictionary with key values
context += f"""
* Product {index + 1} -
- Product name : {product_metadata["name"]}
- Product price: {product_metadata["discount_price"]}
- Brief description of the product: {product_metadata["product_desc"]}
- Detailed description of the product: {product_metadata["about_this_item"]}
- Rating value (1.0 - 5.0): {product_metadata["ratings"]}
- Overall review: {product_metadata["overall_review"]}
"""
# print(f"product_title: {type(product_title)}", product_title)
# print(f"product_metadata: {type(product_metadata)}", product_metadata)
return context
# prompt template for the mistral model
template = """You are a friendly, conversational AI ecommerce assistant. The context includes 5 ecommerce products.
Use only the following context, to find the answer to the questions from the customer.
Its very important that you follow the below instructions.
-Dont use general knowledge to answer the question
-If you dont find the answer from the context or the question is not related to the context, just say that you don't know the answer.
-By any chance the customer should not know you are referring to a context.
Context:
{context}
Question:
{question}
Helpful Answer:"""
import random
import gradio as gr
chat_history = []
def respond(message, chat_history):
global vector_store, template, llm
chatbot_response = ""
try:
context = create_context(message, vector_store)
print("context:-------------------------\n", context)
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
prompt_formatted_str = prompt.format(
context=context,
question=message
)
output = llm.invoke(prompt_formatted_str)
chat_history.append((message, output))
return "", chat_history
except Exception as e:
print("Error:", e)
error_responses = [
"Sorry, I encountered an error while processing your request.",
"Oops, something went wrong. Please try again later.",
"I'm having trouble understanding that. Can you please rephrase?",
"It seems there was an issue. Let's try something else."
]
error_message = random.choice(error_responses)
output = error_message
chat_history.append((message, output))
return "", chat_history
# Define the Gradio interface
# chatbot = gr.Chatbot(height=450)
# msg = gr.Textbox(label="What would you like to know?")
# gr.Interface(
# fn=respond,
# inputs=msg,
# outputs=gr.Textbox(label="Response"),
# title="Conversational AI Chatbot",
# ).launch(
# share=True,
# )
# # Define Gradio components
with gr.Blocks() as demo:
chat_history = []
chatbot = gr.Chatbot(height=450)
msg = gr.Textbox(label="What would you like to know?")
btn = gr.Button("Submit")
clear = gr.ClearButton(value="Clear Console", components=[msg, chatbot])
# Button click event to respond to the message
btn.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot])
# Clear button event to clear the console
msg.submit(respond, inputs=[msg, chatbot], outputs=[msg, chatbot])
# Define the Gradio interface
gr.close_all()
demo.launch()