Spaces:
Runtime error
Runtime error
from langchain_community.vectorstores import Qdrant | |
from langchain_together import Together | |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings | |
from qdrant_client import QdrantClient | |
from langchain_core.prompts import PromptTemplate | |
import os | |
from dotenv import load_dotenv | |
from langchain_community.vectorstores import Qdrant | |
from langchain.embeddings import HuggingFaceBgeEmbeddings | |
from langchain.docstore.document import Document | |
import pandas as pd | |
# formatting the data for ingestion | |
all_prods_df = pd.read_csv("data/cleaned_CSVIndian10000.csv") | |
all_prods_df = all_prods_df.fillna("") | |
product_metadata = all_prods_df.to_dict(orient="index") | |
texts = [str(v['name']) + "\n" + str(v['product_desc']) for k, v in product_metadata.items()] | |
metadatas = list(product_metadata.values()) | |
docs = [Document(page_content=txt, metadata={"source": meta}) for txt, meta in zip(texts, metadatas)] | |
print("Data loaded.........") | |
# load the embedding model | |
model_name = "BAAI/bge-small-en-v1.5" | |
model_kwargs = {"device": "cpu"} | |
encode_kwargs = {"normalize_embeddings": True} | |
embeddings = HuggingFaceBgeEmbeddings( | |
model_name=model_name, | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs | |
) | |
print("Embedding model loaded.........") | |
# load the vector store | |
url="https://42bc5a86-aaa1-4e0f-96bb-5a77988b0269.us-east4-0.gcp.cloud.qdrant.io" | |
collection_name = "shopintel100v3" | |
api_key = "OLP6I0L5QQuQdtpvQPmUjyl-DNbjSsJqyrkiH51dgiGAaqW1TzcJvA" | |
vector_store = Qdrant.from_documents( | |
docs, | |
embeddings, | |
# location=":memory:", | |
url=url, | |
prefer_grpc=True, | |
api_key=api_key, | |
collection_name=collection_name, | |
force_recreate=True | |
) | |
print("Vector store loaded.........") | |
load_dotenv() | |
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') | |
print("api key: ", TOGETHER_API_KEY, type(TOGETHER_API_KEY)) | |
# load the embedding model | |
# model_name = "BAAI/bge-large-en" | |
# model_kwargs = {"device": "cpu"} | |
# encode_kwargs = {"normalize_embeddings": True} | |
# embeddings = HuggingFaceBgeEmbeddings( | |
# model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs | |
# ) | |
# print("embeddings loaded.............") | |
# url = "http://localhost:6333" | |
# collection_name = "shopintel100v3" | |
# client = QdrantClient(url=url, prefer_grpc=False) | |
# vector_store = Qdrant( | |
# client=client, | |
# collection_name=collection_name, | |
# embeddings=embeddings | |
# ) | |
print("qdrant embeddings from docker were loaded.............") | |
llm = Together( | |
model="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
temperature=0.2, | |
max_tokens=5000, | |
top_k=50, | |
together_api_key=TOGETHER_API_KEY | |
) | |
# query = "ASUS VivoBook 15 (2021)" | |
# result = vector_store.similarity_search_with_score(query=query, k=5) | |
# for i in result: | |
# doc, score = i | |
# print({"score": score, "content": doc.page_content, "metadata": doc.metadata["source"]}) | |
# print("---------------------------------") | |
# function to retrieve products from qdrant | |
def retrieve_product(user_input, vector_store, k = 10): | |
result = vector_store.similarity_search_with_score( | |
query=user_input, | |
k=k | |
) | |
return result | |
# function to create context from user query | |
def create_context(user_input, vector_store): | |
result = retrieve_product(user_input, vector_store) | |
context = "" | |
for index, value in enumerate(result): | |
product = value | |
product_title = product[0].page_content # Extracting the page_content for each result which is a string | |
product_metadata = product[0].metadata["source"] # Extracting the metadata for each result which is a dictionary with key values | |
context += f""" | |
* Product {index + 1} - | |
- Product name : {product_metadata["name"]} | |
- Product price: {product_metadata["discount_price"]} | |
- Brief description of the product: {product_metadata["product_desc"]} | |
- Detailed description of the product: {product_metadata["about_this_item"]} | |
- Rating value (1.0 - 5.0): {product_metadata["ratings"]} | |
- Overall review: {product_metadata["overall_review"]} | |
""" | |
# print(f"product_title: {type(product_title)}", product_title) | |
# print(f"product_metadata: {type(product_metadata)}", product_metadata) | |
return context | |
# prompt template for the mistral model | |
template = """You are a friendly, conversational AI ecommerce assistant. The context includes 5 ecommerce products. | |
Use only the following context, to find the answer to the questions from the customer. | |
Its very important that you follow the below instructions. | |
-Dont use general knowledge to answer the question | |
-If you dont find the answer from the context or the question is not related to the context, just say that you don't know the answer. | |
-By any chance the customer should not know you are referring to a context. | |
Context: | |
{context} | |
Question: | |
{question} | |
Helpful Answer:""" | |
import random | |
import gradio as gr | |
chat_history = [] | |
def respond(message, chat_history): | |
global vector_store, template, llm | |
chatbot_response = "" | |
try: | |
context = create_context(message, vector_store) | |
print("context:-------------------------\n", context) | |
prompt = PromptTemplate(template=template, input_variables=["context", "question"]) | |
prompt_formatted_str = prompt.format( | |
context=context, | |
question=message | |
) | |
output = llm.invoke(prompt_formatted_str) | |
chat_history.append((message, output)) | |
return "", chat_history | |
except Exception as e: | |
print("Error:", e) | |
error_responses = [ | |
"Sorry, I encountered an error while processing your request.", | |
"Oops, something went wrong. Please try again later.", | |
"I'm having trouble understanding that. Can you please rephrase?", | |
"It seems there was an issue. Let's try something else." | |
] | |
error_message = random.choice(error_responses) | |
output = error_message | |
chat_history.append((message, output)) | |
return "", chat_history | |
# Define the Gradio interface | |
# chatbot = gr.Chatbot(height=450) | |
# msg = gr.Textbox(label="What would you like to know?") | |
# gr.Interface( | |
# fn=respond, | |
# inputs=msg, | |
# outputs=gr.Textbox(label="Response"), | |
# title="Conversational AI Chatbot", | |
# ).launch( | |
# share=True, | |
# ) | |
# # Define Gradio components | |
with gr.Blocks() as demo: | |
chat_history = [] | |
chatbot = gr.Chatbot(height=450) | |
msg = gr.Textbox(label="What would you like to know?") | |
btn = gr.Button("Submit") | |
clear = gr.ClearButton(value="Clear Console", components=[msg, chatbot]) | |
# Button click event to respond to the message | |
btn.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot]) | |
# Clear button event to clear the console | |
msg.submit(respond, inputs=[msg, chatbot], outputs=[msg, chatbot]) | |
# Define the Gradio interface | |
gr.close_all() | |
demo.launch() | |