from langchain_community.vectorstores import Qdrant from langchain_together import Together from langchain_community.embeddings import HuggingFaceBgeEmbeddings from qdrant_client import QdrantClient from langchain_core.prompts import PromptTemplate import os from dotenv import load_dotenv from langchain_community.vectorstores import Qdrant from langchain.embeddings import HuggingFaceBgeEmbeddings from langchain.docstore.document import Document import pandas as pd # formatting the data for ingestion all_prods_df = pd.read_csv("data/cleaned_CSVIndian10000.csv") all_prods_df = all_prods_df.fillna("") product_metadata = all_prods_df.to_dict(orient="index") texts = [str(v['name']) + "\n" + str(v['product_desc']) for k, v in product_metadata.items()] metadatas = list(product_metadata.values()) docs = [Document(page_content=txt, metadata={"source": meta}) for txt, meta in zip(texts, metadatas)] print("Data loaded.........") # load the embedding model model_name = "BAAI/bge-small-en-v1.5" model_kwargs = {"device": "cpu"} encode_kwargs = {"normalize_embeddings": True} embeddings = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs ) print("Embedding model loaded.........") # load the vector store url="https://42bc5a86-aaa1-4e0f-96bb-5a77988b0269.us-east4-0.gcp.cloud.qdrant.io" collection_name = "shopintel100v3" api_key = "OLP6I0L5QQuQdtpvQPmUjyl-DNbjSsJqyrkiH51dgiGAaqW1TzcJvA" vector_store = Qdrant.from_documents( docs, embeddings, # location=":memory:", url=url, prefer_grpc=True, api_key=api_key, collection_name=collection_name, force_recreate=True ) print("Vector store loaded.........") load_dotenv() TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') print("api key: ", TOGETHER_API_KEY, type(TOGETHER_API_KEY)) # load the embedding model # model_name = "BAAI/bge-large-en" # model_kwargs = {"device": "cpu"} # encode_kwargs = {"normalize_embeddings": True} # embeddings = HuggingFaceBgeEmbeddings( # model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs # ) # print("embeddings loaded.............") # url = "http://localhost:6333" # collection_name = "shopintel100v3" # client = QdrantClient(url=url, prefer_grpc=False) # vector_store = Qdrant( # client=client, # collection_name=collection_name, # embeddings=embeddings # ) print("qdrant embeddings from docker were loaded.............") llm = Together( model="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.2, max_tokens=5000, top_k=50, together_api_key=TOGETHER_API_KEY ) # query = "ASUS VivoBook 15 (2021)" # result = vector_store.similarity_search_with_score(query=query, k=5) # for i in result: # doc, score = i # print({"score": score, "content": doc.page_content, "metadata": doc.metadata["source"]}) # print("---------------------------------") # function to retrieve products from qdrant def retrieve_product(user_input, vector_store, k = 10): result = vector_store.similarity_search_with_score( query=user_input, k=k ) return result # function to create context from user query def create_context(user_input, vector_store): result = retrieve_product(user_input, vector_store) context = "" for index, value in enumerate(result): product = value product_title = product[0].page_content # Extracting the page_content for each result which is a string product_metadata = product[0].metadata["source"] # Extracting the metadata for each result which is a dictionary with key values context += f""" * Product {index + 1} - - Product name : {product_metadata["name"]} - Product price: {product_metadata["discount_price"]} - Brief description of the product: {product_metadata["product_desc"]} - Detailed description of the product: {product_metadata["about_this_item"]} - Rating value (1.0 - 5.0): {product_metadata["ratings"]} - Overall review: {product_metadata["overall_review"]} """ # print(f"product_title: {type(product_title)}", product_title) # print(f"product_metadata: {type(product_metadata)}", product_metadata) return context # prompt template for the mistral model template = """You are a friendly, conversational AI ecommerce assistant. The context includes 5 ecommerce products. Use only the following context, to find the answer to the questions from the customer. Its very important that you follow the below instructions. -Dont use general knowledge to answer the question -If you dont find the answer from the context or the question is not related to the context, just say that you don't know the answer. -By any chance the customer should not know you are referring to a context. Context: {context} Question: {question} Helpful Answer:""" import random import gradio as gr chat_history = [] def respond(message, chat_history): global vector_store, template, llm chatbot_response = "" try: context = create_context(message, vector_store) print("context:-------------------------\n", context) prompt = PromptTemplate(template=template, input_variables=["context", "question"]) prompt_formatted_str = prompt.format( context=context, question=message ) output = llm.invoke(prompt_formatted_str) chat_history.append((message, output)) return "", chat_history except Exception as e: print("Error:", e) error_responses = [ "Sorry, I encountered an error while processing your request.", "Oops, something went wrong. Please try again later.", "I'm having trouble understanding that. Can you please rephrase?", "It seems there was an issue. Let's try something else." ] error_message = random.choice(error_responses) output = error_message chat_history.append((message, output)) return "", chat_history # Define the Gradio interface # chatbot = gr.Chatbot(height=450) # msg = gr.Textbox(label="What would you like to know?") # gr.Interface( # fn=respond, # inputs=msg, # outputs=gr.Textbox(label="Response"), # title="Conversational AI Chatbot", # ).launch( # share=True, # ) # # Define Gradio components with gr.Blocks() as demo: chat_history = [] chatbot = gr.Chatbot(height=450) msg = gr.Textbox(label="What would you like to know?") btn = gr.Button("Submit") clear = gr.ClearButton(value="Clear Console", components=[msg, chatbot]) # Button click event to respond to the message btn.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot]) # Clear button event to clear the console msg.submit(respond, inputs=[msg, chatbot], outputs=[msg, chatbot]) # Define the Gradio interface gr.close_all() demo.launch()