File size: 22,721 Bytes
4b2c8d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
from dataclasses import dataclass
from typing import List, Set



@dataclass
class GraphConfig:
    mem_f: float = 2
    mem_b: float = -1
    mem_w: float = -1
    max_mem: float = None
    cost_f: int = 1
    cost_b: int = 1
    cost_w: int = 1
    cost_comm: int = 0
    print_scaling: int = 1

    def __post_init__(self):
        assert type(self.cost_f) is int
        assert type(self.cost_b) is int
        assert type(self.cost_w) is int
        assert type(self.cost_comm) is int
        assert self.mem_f + self.mem_b + self.mem_w == 0

@dataclass(eq=True, frozen=True)
class ScheduledNode:
    type: str
    stage: int
    minibatch: int
    start_time: int
    completion_time: int
    rollback: bool = False


@dataclass
class Graph:
    nstages: int
    nmb: int
    nnodes: int
    config: GraphConfig
    parents: List[Set[int]] = None
    name: List[str] = None

    # ID mapping:
    # F[stage][minibatch]: 0..STAGE* MB
    # B[stage][minibatch]: STAGE* MB .. 2 * STAGE * MB
    # W[stage][minibatch]: 2 * STAGE* MB .. 3 * STAGE * MB

    def get_id(self, type, stage, mb):
        return type * (self.nstages * self.nmb) + stage * self.nmb + mb

    def get_stage(self, id):
        return (id // self.nmb) % self.nstages

    def get_cost(self, id):
        type = id // (self.nstages * self.nmb)
        return [self.config.cost_f, self.config.cost_b, self.config.cost_w][type]

    def get_mem(self, id):
        type = id // (self.nstages * self.nmb)
        return [self.config.mem_f, self.config.mem_b, self.config.mem_w][type]

    @classmethod
    def build_graph(cls, nstages, nmb, config):
        nnodes = nstages * nmb * 3
        g = Graph(nstages=nstages, nmb=nmb, nnodes=nnodes, config=config)
        parents = []
        name = []
        for type in range(3):
            for stage in range(nstages):
                for mb in range(nmb):
                    p = set()
                    if type == 0:
                        name.append(f'F{mb}')
                        if stage > 0:
                            p.add(g.get_id(type, stage - 1, mb))
                        if mb > 0:
                            p.add(g.get_id(type, stage, mb - 1))
                    elif type == 1:
                        name.append(f'B{mb}')
                        if stage == nstages - 1:
                            p.add(g.get_id(0, stage, mb))
                        else:
                            p.add(g.get_id(type, stage + 1, mb))
                        if mb > 0:
                            p.add(g.get_id(type, stage, mb - 1))
                    elif type == 2:
                        name.append(f'W{mb}')
                        p.add(g.get_id(1, stage, mb))
                        if mb > 0:
                            p.add(g.get_id(type, stage, mb - 1))
                    else:
                        assert False
                    parents.append(p)

        g.name = name
        g.parents = parents
        return g

    # Manual ordering producing this kind of schedule:
    # fffffffbfbfbfbfbfbwbwbwbwbwbwbwwwwww
    #  fffffbfbfbfbfbfbfbfbwbwbwbwbwwwwwwww
    #   fffbfbfbfbfbfbfbfbfbfbwbwbwwwwwwwwww
    #    fbfbfbfbfbfbfbfbfbfbfbfbwwwwwwwwwwww
    # Returns the order index of each node on its own stage
    def manual_order(
        self, allow_bubble_before_first_b=False, prioritize_b=False, no_bubble_greedy=True
    ):
        order = [0] * self.nnodes
        f = [0] * self.nstages
        b = [0] * self.nstages
        w = [0] * self.nstages
        o = [0] * self.nstages
        m = [0] * self.nstages
        e = [0] * self.nstages
        t = [0] * self.nnodes
        max_mem = self.config.max_mem or self.get_mem(self.get_id(0, 0, 0)) * self.nmb * 3
        comm = self.config.cost_comm
        order_str = [""] * self.nstages
        stage_bubble = [0] * self.nstages

        def get_max_bubble():
            max_bubble = 0
            for bb in stage_bubble:
                max_bubble = max(max_bubble, bb)
            return max_bubble

        def put(stage_j, type_k):
            if type_k == 0:
                _i = f[stage_j]
            elif type_k == 1:
                _i = b[stage_j]
            else:
                _i = w[stage_j]
            _j = stage_j
            _id = self.get_id(type_k, _j, _i)
            _mem = self.get_mem(_id)
            _cost = self.get_cost(_id)
            assert m[_j] + _mem <= max_mem

            tmp = e[_j] + _cost
            no_bubble = tmp
            if _j > 0 and type_k == 0:
                tmp = max(tmp, t[self.get_id(0, _j - 1, _i)] + comm + _cost)
            if _j < self.nstages - 1 and type_k == 1:
                tmp = max(tmp, t[self.get_id(1, _j + 1, _i)] + comm + _cost)
            if f[_j] > 0:
                stage_bubble[_j] += tmp - no_bubble
            e[_j] = tmp
            t[_id] = tmp
            m[_j] += _mem
            order[_id] = o[_j]
            if type_k == 0:
                f[_j] += 1
            elif type_k == 1:
                b[_j] += 1
            else:
                w[_j] += 1
            o[_j] += 1
            fbw = "fbw"
            order_str[stage_j] += fbw[type_k]

        for i in range(self.nmb):
            if i == 0:
                for j in range(self.nstages):
                    put(j, 0)
                f_required = [0] * self.nstages
                last_t = 0
                for j in range(self.nstages - 1, -1, -1):
                    if j == self.nstages - 1:
                        last_t = t[self.get_id(0, j, i)] + self.get_cost(self.get_id(1, j, i))
                        continue
                    mem = m[j]
                    cost = e[j]
                    while True:
                        f_id = self.get_id(0, j, f[j] + f_required[j])
                        if f[j] + f_required[j] < self.nmb and mem + self.get_mem(f_id) <= max_mem:
                            if allow_bubble_before_first_b:
                                if cost + self.get_cost(f_id) > last_t + comm:
                                    break
                            else:
                                if cost >= last_t + comm:
                                    break
                            mem += self.get_mem(f_id)
                            cost += self.get_cost(f_id)
                            f_required[j] += 1
                        else:
                            break
                    last_t = max(cost, last_t + comm) + self.get_cost(self.get_id(1, j, i))
                for j in range(self.nstages):
                    while j > 0 and f_required[j] > 0 and f_required[j] >= f_required[j - 1] and f[j] + f_required[j] < self.nmb:
                        f_required[j] -= 1
                for j in range(self.nstages - 1, -1, -1):
                    for _ in range(f_required[j]):
                        put(j, 0)
                    put(j, 1)
                continue
            f_required = [0] * self.nstages
            for j in range(self.nstages):
                if f[j] >= self.nmb:
                    continue
                if j + 1 < self.nstages and f[j] >= f[j + 1] + 2 and prioritize_b:
                    next_plus_fw = (
                        e[j + 1]
                        + self.get_cost(self.get_id(0, j + 1, f[j + 1]))
                        + self.get_cost(self.get_id(1, j + 1, b[j + 1]))
                        + comm
                    )
                    if e[j] >= next_plus_fw:
                        continue
                    f_id = self.get_id(0, j, f[j])
                    f_mem = self.get_mem(f_id)
                    w_cost, w_cnt = 0, 0
                    mem_with_w = m[j] + f_mem
                    while mem_with_w > max_mem and w[j] + w_cnt < b[j]:
                        w_id = self.get_id(2, j, w[j] + w_cnt)
                        w_cost += self.get_cost(w_id)
                        mem_with_w += self.get_mem(w_id)
                        w_cnt += 1
                    if e[j] + self.get_cost(f_id) + w_cost <= next_plus_fw:
                        f_required[j] = 1
                        continue

                    w_cost, w_cnt = 0, 0
                    # mem_with_w = m[j]
                    # while w[j] + w_cnt < b[j]:
                    #     w_id = self.get_id(2, j, w[j] + w_cnt)
                    #     w_cost += self.get_cost(w_id)
                    #     mem_with_w += self.get_mem(w_id)
                    #     w_cnt += 1
                    # if e[j] + w_cost >= next_plus_fw:
                    #     continue
                    if next_plus_fw - (e[j] + w_cost) <= get_max_bubble() - stage_bubble[j]:
                        # TODO: can sample here
                        continue
                f_required[j] = 1
            for j in range(self.nstages - 2, -1, -1):
                f_required[j] = min(f_required[j], f_required[j + 1])
            for j in range(self.nstages):
                if f_required[j] == 0:
                    continue
                f_id = self.get_id(0, j, f[j])
                mem = self.get_mem(f_id)
                while m[j] + mem > max_mem:
                    if w[j] >= b[j]:
                        raise ValueError("Cannot fit memory")
                    put(j, 2)
                if j > 0:
                    while (
                        w[j] < b[j]
                        and e[j] + self.get_cost(self.get_id(2, j, w[j]))
                        <= t[self.get_id(0, j - 1, f[j])] + comm
                    ):
                        put(j, 2)
                    if w[j] < b[j] and e[j] < t[self.get_id(0, j - 1, f[j])] + comm:
                        # TODO: e[j] + self.get_cost(self.get_id(2, j, w[j])) > t[self.get_id(0, j - 1, f[j])] + comm
                        if (
                            t[self.get_id(0, j - 1, f[j])] + comm - e[j]
                            <= get_max_bubble() - stage_bubble[j]
                        ):
                            # TODO: can sample here
                            if no_bubble_greedy:
                                put(j, 2)
                        else:
                            put(j, 2)
                put(j, 0)
            for j in range(self.nstages - 1, -1, -1):
                assert b[j] == i
                b_id = self.get_id(1, j, b[j])
                mem = self.get_mem(b_id)
                while m[j] + mem > max_mem:
                    if w[j] >= b[j]:
                        raise ValueError("Cannot fit memory")
                    put(j, 2)
                if j + 1 < self.nstages:
                    while (
                        w[j] < b[j]
                        and e[j] + self.get_cost(self.get_id(2, j, w[j]))
                        <= t[self.get_id(1, j + 1, i)] + comm
                    ):
                        put(j, 2)
                    if w[j] < b[j] and e[j] < t[self.get_id(1, j + 1, i)] + comm:
                        # TODO: e[j] + self.get_cost(self.get_id(2, j, w[j])) > t[self.get_id(1, j + 1, i)] + comm
                        if (
                            t[self.get_id(1, j + 1, i)] + comm - e[j]
                            <= get_max_bubble() - stage_bubble[j]
                        ):
                            # TODO: can sample here
                            if no_bubble_greedy:
                                put(j, 2)
                        else:
                            put(j, 2)
                if j == 0 and f[j] == self.nmb:
                    while w[j] < b[j]:
                        put(j, 2)
                put(j, 1)

        for i in range(self.nstages):
            while w[i] < self.nmb:
                put(i, 2)
            # print(f"{' ' * i}{order_str[i]}  -> {e[i]}")

        for i in range(self.nstages):
            for j in range(self.nmb):
                f_id = self.get_id(0, i, j)
                b_id = self.get_id(1, i, j)
                w_id = self.get_id(2, i, j)
                f_cost = self.get_cost(f_id)
                b_cost = self.get_cost(b_id)
                w_cost = self.get_cost(w_id)
                assert t[b_id] >= t[f_id] + b_cost
                assert t[w_id] >= t[b_id] + w_cost, f"{i}-{j}, {t[w_id]} >= {t[b_id]} + {w_cost}"
                if i > 0:
                    assert t[f_id] >= t[self.get_id(0, i - 1, j)] + comm + f_cost, f"{i}-{j}"
                if i < self.nstages - 1:
                    assert t[b_id] >= t[self.get_id(1, i + 1, j)] + comm + b_cost

        # print(order)
        best_time = 0
        for i in range(self.nstages):
            time_i = (
                t[self.get_id(2, i, self.nmb - 1)]
                - t[self.get_id(0, i, 0)]
                + self.get_cost(self.get_id(0, i, 0))
            )
            best_time = max(best_time, time_i)

        return order, t, best_time


def initial_solution(graph):
    best_time, order, complete_time = None, None, None
    for allow_bubble_before_first_b in [True, False]:
        for prioritize_b in [True, False]:
            for no_bubble_greedy in [True, False]:
                order_t, complete_time_t, best_time_t = graph.manual_order(
                    allow_bubble_before_first_b=allow_bubble_before_first_b,
                    prioritize_b=prioritize_b,
                    no_bubble_greedy=no_bubble_greedy,
                )
                if best_time is None or best_time_t < best_time:
                    best_time = best_time_t
                    order = order_t
                    complete_time = complete_time_t

    print_detail(graph, complete_time)
    print("-" * 20, best_time, "-" * 20)
    return best_time, order, complete_time


def print_detail(graph, F):
    typenames = ['F', 'B', 'W']
    times = []
    for stage in range(graph.nstages):
        stage_str = ['.'] * int(F[graph.get_id(2, stage, graph.nmb - 1)] / graph.config.print_scaling)
        for _type in range(3):
            for _mb in range(graph.nmb):
                _id = graph.get_id(_type, stage, _mb)
                end = int(F[_id] / graph.config.print_scaling)
                start = int((F[_id] - graph.get_cost(_id)) / graph.config.print_scaling)
                for j in range(start, end):
                    if j == start or j == end - 1:
                        stage_str[j] = typenames[_type]
                    elif j == start + 1:
                        if _mb >= 10:
                            stage_str[j] = str(_mb // 10)
                        else:
                            stage_str[j] = str(_mb)
                    elif j == start + 2 and _mb >= 10:
                        stage_str[j] = str(_mb % 10)
                    else:
                        stage_str[j] = "-"
        _str = ""
        for _c in stage_str:
            _str += _c
        times.append(
            F[graph.get_id(2, stage, graph.nmb - 1)]
            - F[graph.get_id(0, stage, 0)]
            + graph.get_cost(graph.get_id(0, stage, 0))
        )
        print(_str)
    print('Longest stage time: ', max(times))


def ilp_results(graph, F):
    typenames = ['F', 'B', 'W']
    local_order = []
    end_time = []
    for i in range(graph.nnodes):
        end_time.append(F[i])
    for stage in range(graph.nstages):
        order = []
        for type in range(3):
            for mb in range(graph.nmb):
                id = graph.get_id(type, stage, mb)
                order.append(
                    ScheduledNode(
                        type=typenames[type],
                        stage=stage,
                        minibatch=mb,
                        start_time=end_time[id] - graph.get_cost(id),
                        completion_time=F[id],
                    )
                )
        local_order.append(order)
    # For each F/B, append a send/recv node. The timestamp of recv node is the same as send node to guarrentee a global order.
    comm_id = {}
    comm_id_counter = 0
    post_validation_time = 0
    for i in range(graph.nstages - 1, -1, -1):
        warmup_f_count = -1
        first_b_end = end_time[graph.get_id(1, i, 0)]
        for j in range(graph.nmb):
            if end_time[graph.get_id(0, i, j)] < first_b_end:
                warmup_f_count += 1
        assert warmup_f_count >= 0
        pv_id = warmup_f_count
        _id = graph.get_id(0, i, pv_id)
        _cost = graph.get_cost(_id)
        post_validation_time = max(post_validation_time, end_time[_id] - _cost - graph.config.cost_comm)
        # post_validation_time = 0
        # print(i, pv_id, post_validation_time)
        for it in ["RECV_", "SEND_", ""]:
            if i == 0 and it == "SEND_":
                continue
            if i == graph.nstages - 1 and it == "RECV_":
                continue
            # stage_ = i - 1 if it == "RECV_" else i
            stage_ = i
            local_order[stage_].append(ScheduledNode(
                type=it + "POST_VALIDATION",
                stage=stage_,
                minibatch=0,
                start_time=post_validation_time,
                completion_time=post_validation_time,
            ))
            comm_id[local_order[stage_][-1]] = comm_id_counter
            comm_id_counter += 1
    for stage in range(graph.nstages):
        for node in local_order[stage]:
            if node.type == 'F' and node.stage != graph.nstages - 1:
                local_order[stage].append(
                    ScheduledNode(
                        type='SEND_FORWARD',
                        stage=stage,
                        minibatch=node.minibatch,
                        start_time=node.completion_time,
                        completion_time=node.completion_time,  # TODO: consider comm cost in completion time
                    )
                )
                local_order[stage + 1].append(
                    ScheduledNode(
                        type='RECV_FORWARD',
                        stage=stage + 1,
                        minibatch=node.minibatch,
                        start_time=node.completion_time,
                        completion_time=node.completion_time,  # TODO: consider comm cost in completion time
                    )
                )
                comm_id[local_order[stage][-1]] = comm_id_counter
                comm_id[local_order[stage + 1][-1]] = comm_id_counter
                comm_id_counter += 1
            if node.type == 'B' and node.stage != 0:
                local_order[stage].append(
                    ScheduledNode(
                        type='SEND_BACKWARD',
                        stage=stage,
                        minibatch=node.minibatch,
                        start_time=node.completion_time,
                        completion_time=node.completion_time,  # TODO: consider comm cost in completion time
                    )
                )
                local_order[stage - 1].append(
                    ScheduledNode(
                        type='RECV_BACKWARD',
                        stage=stage - 1,
                        minibatch=node.minibatch,
                        start_time=node.completion_time,
                        completion_time=node.completion_time,  # TODO: consider comm cost in completion time
                    )
                )
                comm_id[local_order[stage][-1]] = comm_id_counter
                comm_id[local_order[stage - 1][-1]] = comm_id_counter
                comm_id_counter += 1
    for stage in range(graph.nstages):
        # For nodes with the same timestamp on the same stage, communication will be prioritized.
        def even_breaker(x: ScheduledNode):
            # Compute nodes are always delayed.
            if x.type in ['F', 'B', 'W']:
                return comm_id_counter
            # For comm nodes, order by their unique comm id
            return comm_id[x]

        local_order[stage] = list(sorted(
            local_order[stage], key=lambda x: (x.start_time, even_breaker(x))
        ))
        # If a recv with intersects with previous computation, reorder them so that recv
        # is executed before computation and hence can be overlapped.
        for i in range(len(local_order[stage])):
            if i > 0 and local_order[stage][i - 1].type in {'F', 'B', 'W'} and \
                local_order[stage][i].type.startswith('RECV') and \
                "POST_VALIDATION" not in local_order[stage][i].type and \
                local_order[stage][i].start_time <= local_order[stage][i - 1].completion_time:
                (local_order[stage][i], local_order[stage][i - 1]) = (local_order[stage][i - 1], local_order[stage][i])
        # print([(x.type, x.start_time, x.completion_time) for x in local_order[stage]])

    local_order_with_rollback = [[] for _ in range(graph.nstages)]
    for rank in range(graph.nstages):
        rollback_comm = set()
        if rank > 0:
            for node in local_order[rank - 1]:
                if node.type == "POST_VALIDATION":
                    break
                if node.type == "SEND_FORWARD":
                    rollback_comm.add(node.minibatch)
        for node in local_order[rank]:
            if node.type == "RECV_FORWARD" and node.minibatch in rollback_comm:
                rollback = True
                rollback_comm.remove(node.minibatch)
            else:
                rollback = False
            local_order_with_rollback[rank].append(ScheduledNode(
                type=node.type,
                stage=node.stage,
                minibatch=node.minibatch,
                start_time=node.start_time,
                completion_time=node.completion_time,
                rollback=rollback,
            ))
        assert len(rollback_comm) == 0
        # for node in local_order_with_rollback[rank]:
        #     print(f"{node.type}-{node.minibatch}-{int(node.rollback)}", end=', ')
        # print()

    print_detail(graph, end_time)
    return local_order_with_rollback


def auto_schedule(nstages, nmb, config):
    graph = Graph.build_graph(nstages, nmb, config)
    
    best_time, order, complete_time = initial_solution(graph)
    return ilp_results(graph, complete_time)


if __name__ == "__main__":
    # auto_schedule(4, 12, GraphConfig(cost_f=5, cost_b=6, cost_w=4, cost_comm=0, max_mem=10))
    # auto_schedule(4, 12, GraphConfig(cost_f=5, cost_b=6, cost_w=4, cost_comm=0, max_mem=14))
    auto_schedule(24, 72, GraphConfig(cost_f=5, cost_b=6, cost_w=4, cost_comm=0, max_mem=100))
    auto_schedule(4, 12, GraphConfig(
        cost_f=5478,
        cost_b=5806,
        cost_w=3534,
        cost_comm=200,
        max_mem=32,
        print_scaling=1000
    ))
    auto_schedule(32, 16, GraphConfig(
        cost_f=1,
        cost_b=1,
        cost_w=1,
        cost_comm=0,
        max_mem=64,
    ))