File size: 22,721 Bytes
4b2c8d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
from dataclasses import dataclass
from typing import List, Set
@dataclass
class GraphConfig:
mem_f: float = 2
mem_b: float = -1
mem_w: float = -1
max_mem: float = None
cost_f: int = 1
cost_b: int = 1
cost_w: int = 1
cost_comm: int = 0
print_scaling: int = 1
def __post_init__(self):
assert type(self.cost_f) is int
assert type(self.cost_b) is int
assert type(self.cost_w) is int
assert type(self.cost_comm) is int
assert self.mem_f + self.mem_b + self.mem_w == 0
@dataclass(eq=True, frozen=True)
class ScheduledNode:
type: str
stage: int
minibatch: int
start_time: int
completion_time: int
rollback: bool = False
@dataclass
class Graph:
nstages: int
nmb: int
nnodes: int
config: GraphConfig
parents: List[Set[int]] = None
name: List[str] = None
# ID mapping:
# F[stage][minibatch]: 0..STAGE* MB
# B[stage][minibatch]: STAGE* MB .. 2 * STAGE * MB
# W[stage][minibatch]: 2 * STAGE* MB .. 3 * STAGE * MB
def get_id(self, type, stage, mb):
return type * (self.nstages * self.nmb) + stage * self.nmb + mb
def get_stage(self, id):
return (id // self.nmb) % self.nstages
def get_cost(self, id):
type = id // (self.nstages * self.nmb)
return [self.config.cost_f, self.config.cost_b, self.config.cost_w][type]
def get_mem(self, id):
type = id // (self.nstages * self.nmb)
return [self.config.mem_f, self.config.mem_b, self.config.mem_w][type]
@classmethod
def build_graph(cls, nstages, nmb, config):
nnodes = nstages * nmb * 3
g = Graph(nstages=nstages, nmb=nmb, nnodes=nnodes, config=config)
parents = []
name = []
for type in range(3):
for stage in range(nstages):
for mb in range(nmb):
p = set()
if type == 0:
name.append(f'F{mb}')
if stage > 0:
p.add(g.get_id(type, stage - 1, mb))
if mb > 0:
p.add(g.get_id(type, stage, mb - 1))
elif type == 1:
name.append(f'B{mb}')
if stage == nstages - 1:
p.add(g.get_id(0, stage, mb))
else:
p.add(g.get_id(type, stage + 1, mb))
if mb > 0:
p.add(g.get_id(type, stage, mb - 1))
elif type == 2:
name.append(f'W{mb}')
p.add(g.get_id(1, stage, mb))
if mb > 0:
p.add(g.get_id(type, stage, mb - 1))
else:
assert False
parents.append(p)
g.name = name
g.parents = parents
return g
# Manual ordering producing this kind of schedule:
# fffffffbfbfbfbfbfbwbwbwbwbwbwbwwwwww
# fffffbfbfbfbfbfbfbfbwbwbwbwbwwwwwwww
# fffbfbfbfbfbfbfbfbfbfbwbwbwwwwwwwwww
# fbfbfbfbfbfbfbfbfbfbfbfbwwwwwwwwwwww
# Returns the order index of each node on its own stage
def manual_order(
self, allow_bubble_before_first_b=False, prioritize_b=False, no_bubble_greedy=True
):
order = [0] * self.nnodes
f = [0] * self.nstages
b = [0] * self.nstages
w = [0] * self.nstages
o = [0] * self.nstages
m = [0] * self.nstages
e = [0] * self.nstages
t = [0] * self.nnodes
max_mem = self.config.max_mem or self.get_mem(self.get_id(0, 0, 0)) * self.nmb * 3
comm = self.config.cost_comm
order_str = [""] * self.nstages
stage_bubble = [0] * self.nstages
def get_max_bubble():
max_bubble = 0
for bb in stage_bubble:
max_bubble = max(max_bubble, bb)
return max_bubble
def put(stage_j, type_k):
if type_k == 0:
_i = f[stage_j]
elif type_k == 1:
_i = b[stage_j]
else:
_i = w[stage_j]
_j = stage_j
_id = self.get_id(type_k, _j, _i)
_mem = self.get_mem(_id)
_cost = self.get_cost(_id)
assert m[_j] + _mem <= max_mem
tmp = e[_j] + _cost
no_bubble = tmp
if _j > 0 and type_k == 0:
tmp = max(tmp, t[self.get_id(0, _j - 1, _i)] + comm + _cost)
if _j < self.nstages - 1 and type_k == 1:
tmp = max(tmp, t[self.get_id(1, _j + 1, _i)] + comm + _cost)
if f[_j] > 0:
stage_bubble[_j] += tmp - no_bubble
e[_j] = tmp
t[_id] = tmp
m[_j] += _mem
order[_id] = o[_j]
if type_k == 0:
f[_j] += 1
elif type_k == 1:
b[_j] += 1
else:
w[_j] += 1
o[_j] += 1
fbw = "fbw"
order_str[stage_j] += fbw[type_k]
for i in range(self.nmb):
if i == 0:
for j in range(self.nstages):
put(j, 0)
f_required = [0] * self.nstages
last_t = 0
for j in range(self.nstages - 1, -1, -1):
if j == self.nstages - 1:
last_t = t[self.get_id(0, j, i)] + self.get_cost(self.get_id(1, j, i))
continue
mem = m[j]
cost = e[j]
while True:
f_id = self.get_id(0, j, f[j] + f_required[j])
if f[j] + f_required[j] < self.nmb and mem + self.get_mem(f_id) <= max_mem:
if allow_bubble_before_first_b:
if cost + self.get_cost(f_id) > last_t + comm:
break
else:
if cost >= last_t + comm:
break
mem += self.get_mem(f_id)
cost += self.get_cost(f_id)
f_required[j] += 1
else:
break
last_t = max(cost, last_t + comm) + self.get_cost(self.get_id(1, j, i))
for j in range(self.nstages):
while j > 0 and f_required[j] > 0 and f_required[j] >= f_required[j - 1] and f[j] + f_required[j] < self.nmb:
f_required[j] -= 1
for j in range(self.nstages - 1, -1, -1):
for _ in range(f_required[j]):
put(j, 0)
put(j, 1)
continue
f_required = [0] * self.nstages
for j in range(self.nstages):
if f[j] >= self.nmb:
continue
if j + 1 < self.nstages and f[j] >= f[j + 1] + 2 and prioritize_b:
next_plus_fw = (
e[j + 1]
+ self.get_cost(self.get_id(0, j + 1, f[j + 1]))
+ self.get_cost(self.get_id(1, j + 1, b[j + 1]))
+ comm
)
if e[j] >= next_plus_fw:
continue
f_id = self.get_id(0, j, f[j])
f_mem = self.get_mem(f_id)
w_cost, w_cnt = 0, 0
mem_with_w = m[j] + f_mem
while mem_with_w > max_mem and w[j] + w_cnt < b[j]:
w_id = self.get_id(2, j, w[j] + w_cnt)
w_cost += self.get_cost(w_id)
mem_with_w += self.get_mem(w_id)
w_cnt += 1
if e[j] + self.get_cost(f_id) + w_cost <= next_plus_fw:
f_required[j] = 1
continue
w_cost, w_cnt = 0, 0
# mem_with_w = m[j]
# while w[j] + w_cnt < b[j]:
# w_id = self.get_id(2, j, w[j] + w_cnt)
# w_cost += self.get_cost(w_id)
# mem_with_w += self.get_mem(w_id)
# w_cnt += 1
# if e[j] + w_cost >= next_plus_fw:
# continue
if next_plus_fw - (e[j] + w_cost) <= get_max_bubble() - stage_bubble[j]:
# TODO: can sample here
continue
f_required[j] = 1
for j in range(self.nstages - 2, -1, -1):
f_required[j] = min(f_required[j], f_required[j + 1])
for j in range(self.nstages):
if f_required[j] == 0:
continue
f_id = self.get_id(0, j, f[j])
mem = self.get_mem(f_id)
while m[j] + mem > max_mem:
if w[j] >= b[j]:
raise ValueError("Cannot fit memory")
put(j, 2)
if j > 0:
while (
w[j] < b[j]
and e[j] + self.get_cost(self.get_id(2, j, w[j]))
<= t[self.get_id(0, j - 1, f[j])] + comm
):
put(j, 2)
if w[j] < b[j] and e[j] < t[self.get_id(0, j - 1, f[j])] + comm:
# TODO: e[j] + self.get_cost(self.get_id(2, j, w[j])) > t[self.get_id(0, j - 1, f[j])] + comm
if (
t[self.get_id(0, j - 1, f[j])] + comm - e[j]
<= get_max_bubble() - stage_bubble[j]
):
# TODO: can sample here
if no_bubble_greedy:
put(j, 2)
else:
put(j, 2)
put(j, 0)
for j in range(self.nstages - 1, -1, -1):
assert b[j] == i
b_id = self.get_id(1, j, b[j])
mem = self.get_mem(b_id)
while m[j] + mem > max_mem:
if w[j] >= b[j]:
raise ValueError("Cannot fit memory")
put(j, 2)
if j + 1 < self.nstages:
while (
w[j] < b[j]
and e[j] + self.get_cost(self.get_id(2, j, w[j]))
<= t[self.get_id(1, j + 1, i)] + comm
):
put(j, 2)
if w[j] < b[j] and e[j] < t[self.get_id(1, j + 1, i)] + comm:
# TODO: e[j] + self.get_cost(self.get_id(2, j, w[j])) > t[self.get_id(1, j + 1, i)] + comm
if (
t[self.get_id(1, j + 1, i)] + comm - e[j]
<= get_max_bubble() - stage_bubble[j]
):
# TODO: can sample here
if no_bubble_greedy:
put(j, 2)
else:
put(j, 2)
if j == 0 and f[j] == self.nmb:
while w[j] < b[j]:
put(j, 2)
put(j, 1)
for i in range(self.nstages):
while w[i] < self.nmb:
put(i, 2)
# print(f"{' ' * i}{order_str[i]} -> {e[i]}")
for i in range(self.nstages):
for j in range(self.nmb):
f_id = self.get_id(0, i, j)
b_id = self.get_id(1, i, j)
w_id = self.get_id(2, i, j)
f_cost = self.get_cost(f_id)
b_cost = self.get_cost(b_id)
w_cost = self.get_cost(w_id)
assert t[b_id] >= t[f_id] + b_cost
assert t[w_id] >= t[b_id] + w_cost, f"{i}-{j}, {t[w_id]} >= {t[b_id]} + {w_cost}"
if i > 0:
assert t[f_id] >= t[self.get_id(0, i - 1, j)] + comm + f_cost, f"{i}-{j}"
if i < self.nstages - 1:
assert t[b_id] >= t[self.get_id(1, i + 1, j)] + comm + b_cost
# print(order)
best_time = 0
for i in range(self.nstages):
time_i = (
t[self.get_id(2, i, self.nmb - 1)]
- t[self.get_id(0, i, 0)]
+ self.get_cost(self.get_id(0, i, 0))
)
best_time = max(best_time, time_i)
return order, t, best_time
def initial_solution(graph):
best_time, order, complete_time = None, None, None
for allow_bubble_before_first_b in [True, False]:
for prioritize_b in [True, False]:
for no_bubble_greedy in [True, False]:
order_t, complete_time_t, best_time_t = graph.manual_order(
allow_bubble_before_first_b=allow_bubble_before_first_b,
prioritize_b=prioritize_b,
no_bubble_greedy=no_bubble_greedy,
)
if best_time is None or best_time_t < best_time:
best_time = best_time_t
order = order_t
complete_time = complete_time_t
print_detail(graph, complete_time)
print("-" * 20, best_time, "-" * 20)
return best_time, order, complete_time
def print_detail(graph, F):
typenames = ['F', 'B', 'W']
times = []
for stage in range(graph.nstages):
stage_str = ['.'] * int(F[graph.get_id(2, stage, graph.nmb - 1)] / graph.config.print_scaling)
for _type in range(3):
for _mb in range(graph.nmb):
_id = graph.get_id(_type, stage, _mb)
end = int(F[_id] / graph.config.print_scaling)
start = int((F[_id] - graph.get_cost(_id)) / graph.config.print_scaling)
for j in range(start, end):
if j == start or j == end - 1:
stage_str[j] = typenames[_type]
elif j == start + 1:
if _mb >= 10:
stage_str[j] = str(_mb // 10)
else:
stage_str[j] = str(_mb)
elif j == start + 2 and _mb >= 10:
stage_str[j] = str(_mb % 10)
else:
stage_str[j] = "-"
_str = ""
for _c in stage_str:
_str += _c
times.append(
F[graph.get_id(2, stage, graph.nmb - 1)]
- F[graph.get_id(0, stage, 0)]
+ graph.get_cost(graph.get_id(0, stage, 0))
)
print(_str)
print('Longest stage time: ', max(times))
def ilp_results(graph, F):
typenames = ['F', 'B', 'W']
local_order = []
end_time = []
for i in range(graph.nnodes):
end_time.append(F[i])
for stage in range(graph.nstages):
order = []
for type in range(3):
for mb in range(graph.nmb):
id = graph.get_id(type, stage, mb)
order.append(
ScheduledNode(
type=typenames[type],
stage=stage,
minibatch=mb,
start_time=end_time[id] - graph.get_cost(id),
completion_time=F[id],
)
)
local_order.append(order)
# For each F/B, append a send/recv node. The timestamp of recv node is the same as send node to guarrentee a global order.
comm_id = {}
comm_id_counter = 0
post_validation_time = 0
for i in range(graph.nstages - 1, -1, -1):
warmup_f_count = -1
first_b_end = end_time[graph.get_id(1, i, 0)]
for j in range(graph.nmb):
if end_time[graph.get_id(0, i, j)] < first_b_end:
warmup_f_count += 1
assert warmup_f_count >= 0
pv_id = warmup_f_count
_id = graph.get_id(0, i, pv_id)
_cost = graph.get_cost(_id)
post_validation_time = max(post_validation_time, end_time[_id] - _cost - graph.config.cost_comm)
# post_validation_time = 0
# print(i, pv_id, post_validation_time)
for it in ["RECV_", "SEND_", ""]:
if i == 0 and it == "SEND_":
continue
if i == graph.nstages - 1 and it == "RECV_":
continue
# stage_ = i - 1 if it == "RECV_" else i
stage_ = i
local_order[stage_].append(ScheduledNode(
type=it + "POST_VALIDATION",
stage=stage_,
minibatch=0,
start_time=post_validation_time,
completion_time=post_validation_time,
))
comm_id[local_order[stage_][-1]] = comm_id_counter
comm_id_counter += 1
for stage in range(graph.nstages):
for node in local_order[stage]:
if node.type == 'F' and node.stage != graph.nstages - 1:
local_order[stage].append(
ScheduledNode(
type='SEND_FORWARD',
stage=stage,
minibatch=node.minibatch,
start_time=node.completion_time,
completion_time=node.completion_time, # TODO: consider comm cost in completion time
)
)
local_order[stage + 1].append(
ScheduledNode(
type='RECV_FORWARD',
stage=stage + 1,
minibatch=node.minibatch,
start_time=node.completion_time,
completion_time=node.completion_time, # TODO: consider comm cost in completion time
)
)
comm_id[local_order[stage][-1]] = comm_id_counter
comm_id[local_order[stage + 1][-1]] = comm_id_counter
comm_id_counter += 1
if node.type == 'B' and node.stage != 0:
local_order[stage].append(
ScheduledNode(
type='SEND_BACKWARD',
stage=stage,
minibatch=node.minibatch,
start_time=node.completion_time,
completion_time=node.completion_time, # TODO: consider comm cost in completion time
)
)
local_order[stage - 1].append(
ScheduledNode(
type='RECV_BACKWARD',
stage=stage - 1,
minibatch=node.minibatch,
start_time=node.completion_time,
completion_time=node.completion_time, # TODO: consider comm cost in completion time
)
)
comm_id[local_order[stage][-1]] = comm_id_counter
comm_id[local_order[stage - 1][-1]] = comm_id_counter
comm_id_counter += 1
for stage in range(graph.nstages):
# For nodes with the same timestamp on the same stage, communication will be prioritized.
def even_breaker(x: ScheduledNode):
# Compute nodes are always delayed.
if x.type in ['F', 'B', 'W']:
return comm_id_counter
# For comm nodes, order by their unique comm id
return comm_id[x]
local_order[stage] = list(sorted(
local_order[stage], key=lambda x: (x.start_time, even_breaker(x))
))
# If a recv with intersects with previous computation, reorder them so that recv
# is executed before computation and hence can be overlapped.
for i in range(len(local_order[stage])):
if i > 0 and local_order[stage][i - 1].type in {'F', 'B', 'W'} and \
local_order[stage][i].type.startswith('RECV') and \
"POST_VALIDATION" not in local_order[stage][i].type and \
local_order[stage][i].start_time <= local_order[stage][i - 1].completion_time:
(local_order[stage][i], local_order[stage][i - 1]) = (local_order[stage][i - 1], local_order[stage][i])
# print([(x.type, x.start_time, x.completion_time) for x in local_order[stage]])
local_order_with_rollback = [[] for _ in range(graph.nstages)]
for rank in range(graph.nstages):
rollback_comm = set()
if rank > 0:
for node in local_order[rank - 1]:
if node.type == "POST_VALIDATION":
break
if node.type == "SEND_FORWARD":
rollback_comm.add(node.minibatch)
for node in local_order[rank]:
if node.type == "RECV_FORWARD" and node.minibatch in rollback_comm:
rollback = True
rollback_comm.remove(node.minibatch)
else:
rollback = False
local_order_with_rollback[rank].append(ScheduledNode(
type=node.type,
stage=node.stage,
minibatch=node.minibatch,
start_time=node.start_time,
completion_time=node.completion_time,
rollback=rollback,
))
assert len(rollback_comm) == 0
# for node in local_order_with_rollback[rank]:
# print(f"{node.type}-{node.minibatch}-{int(node.rollback)}", end=', ')
# print()
print_detail(graph, end_time)
return local_order_with_rollback
def auto_schedule(nstages, nmb, config):
graph = Graph.build_graph(nstages, nmb, config)
best_time, order, complete_time = initial_solution(graph)
return ilp_results(graph, complete_time)
if __name__ == "__main__":
# auto_schedule(4, 12, GraphConfig(cost_f=5, cost_b=6, cost_w=4, cost_comm=0, max_mem=10))
# auto_schedule(4, 12, GraphConfig(cost_f=5, cost_b=6, cost_w=4, cost_comm=0, max_mem=14))
auto_schedule(24, 72, GraphConfig(cost_f=5, cost_b=6, cost_w=4, cost_comm=0, max_mem=100))
auto_schedule(4, 12, GraphConfig(
cost_f=5478,
cost_b=5806,
cost_w=3534,
cost_comm=200,
max_mem=32,
print_scaling=1000
))
auto_schedule(32, 16, GraphConfig(
cost_f=1,
cost_b=1,
cost_w=1,
cost_comm=0,
max_mem=64,
))
|