Wan Xinyi
commited on
Commit
•
4b2c8d9
1
Parent(s):
933f413
initial commit
Browse files- app.py +126 -0
- auto_schedule.py +564 -0
- v_schedule.py +461 -0
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import auto_schedule
|
3 |
+
import v_schedule
|
4 |
+
|
5 |
+
def greet(name, is_morning, temperature):
|
6 |
+
salutation = "Good morning" if is_morning else "Good evening"
|
7 |
+
greeting = f"{salutation} {name}. It is {temperature} degrees today"
|
8 |
+
celsius = (temperature - 32) * 5 / 9
|
9 |
+
return greeting, round(celsius, 2)
|
10 |
+
|
11 |
+
def percentage(x):
|
12 |
+
return f"{x*100:.2f}%"
|
13 |
+
|
14 |
+
def get_schedule_time_and_image(result):
|
15 |
+
result = [
|
16 |
+
list(filter(lambda x: x.type in {'F', 'B', 'W'}, r)) for r in result
|
17 |
+
]
|
18 |
+
time = max(
|
19 |
+
[
|
20 |
+
max([x.completion_time for x in stage]) - min([x.start_time for x in stage]) for stage in result
|
21 |
+
]
|
22 |
+
)
|
23 |
+
return time, None
|
24 |
+
|
25 |
+
def calculate(p, m, f, b, w, c, mem):
|
26 |
+
baseline_time=(f+b+w)*m + (f+b+w+c)*(p-1)
|
27 |
+
baseline_bubble=percentage(baseline_time/(f+b+w)/m - 1)
|
28 |
+
baseline_acceleration=percentage(0)
|
29 |
+
baseline_image=None
|
30 |
+
|
31 |
+
|
32 |
+
zb_result = auto_schedule.auto_schedule(p, m, auto_schedule.GraphConfig(
|
33 |
+
cost_f=f,
|
34 |
+
cost_b=b,
|
35 |
+
cost_w=w,
|
36 |
+
cost_comm=c,
|
37 |
+
max_mem=mem * 2,
|
38 |
+
print_scaling=1000
|
39 |
+
))
|
40 |
+
zb_time,zb_image=get_schedule_time_and_image(zb_result)
|
41 |
+
|
42 |
+
zb_bubble=percentage(zb_time/(f+b+w)/m - 1)
|
43 |
+
zb_acceleration=percentage(baseline_time/zb_time - 1)
|
44 |
+
|
45 |
+
zbv_graph = v_schedule.PipelineGraph(
|
46 |
+
n_stage=p,
|
47 |
+
n_micro=m,
|
48 |
+
f_cost=f/2,
|
49 |
+
b_cost=b/2,
|
50 |
+
w_cost=w/2,
|
51 |
+
c_cost=c,
|
52 |
+
f_mem=2,
|
53 |
+
b_mem=-1,
|
54 |
+
w_mem=-1,
|
55 |
+
max_mem=mem * 4,
|
56 |
+
)
|
57 |
+
zbv_result = zbv_graph.get_v_schedule()
|
58 |
+
|
59 |
+
zbv_time,zbv_image = get_schedule_time_and_image(zbv_result)
|
60 |
+
zbv_bubble=percentage(zbv_time/(f+b+w)/m - 1)
|
61 |
+
zbv_acceleration=percentage(baseline_time/zbv_time - 1)
|
62 |
+
zbv_image=None
|
63 |
+
|
64 |
+
return [baseline_time, baseline_bubble, baseline_acceleration, baseline_image, zb_time, zb_bubble, zb_acceleration, zb_image, zbv_time, zbv_bubble, zbv_acceleration, zbv_image]
|
65 |
+
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
gr.Markdown("Zero bubble pipeline parallel bubble calculator")
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column(scale=1):
|
70 |
+
with gr.Group():
|
71 |
+
gr.Markdown("Basic Parameters")
|
72 |
+
with gr.Row():
|
73 |
+
p=gr.Number(label="Number of stages (p)", value=4, interactive=True, precision=0)
|
74 |
+
m=gr.Number(label="Number of microbatches (m)", value=12, interactive=True, precision=0)
|
75 |
+
with gr.Column(scale=2):
|
76 |
+
with gr.Group():
|
77 |
+
gr.Markdown("Costs. All costs are used as integers. For ZBV schedules, this is the time of two virtual stages on a stage combined.")
|
78 |
+
with gr.Row():
|
79 |
+
f=gr.Number(label="Time of F", value=8, interactive=True, precision=0)
|
80 |
+
b=gr.Number(label="Time of B", value=8, interactive=True, precision=0)
|
81 |
+
w=gr.Number(label="Time of W", value=8, interactive=True, precision=0)
|
82 |
+
c=gr.Number(label="Time of one P2P communication", value=1, interactive=True, precision=0)
|
83 |
+
with gr.Group():
|
84 |
+
gr.Markdown("Activation memory limit.")
|
85 |
+
def update_mem(p, s, mem):
|
86 |
+
print("update")
|
87 |
+
if s=="custom":
|
88 |
+
return mem
|
89 |
+
return p*int(s[:-1])
|
90 |
+
memsel=gr.Radio(choices=["1p", "2p", "3p", "custom"], value="1p")
|
91 |
+
mem=gr.Number(label="Custom memory limit in terms of pending F on a stage. For ZBV schedules, this is relative to two virtual stages on a stage combined.", value=p.value, interactive=True, precision=0)
|
92 |
+
memsel.change(update_mem, inputs=[p, memsel, mem], outputs=mem)
|
93 |
+
p.change(update_mem, inputs=[p, memsel, mem], outputs=mem)
|
94 |
+
|
95 |
+
button=gr.Button("Calculate")
|
96 |
+
|
97 |
+
with gr.Group():
|
98 |
+
gr.Markdown("1F1B")
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column(scale=1):
|
101 |
+
baseline_time=gr.Textbox("", label="Longest Stage Time")
|
102 |
+
baseline_bubble=gr.Textbox("", label="Bubble Rate. Calculated as (1 - longest stage time/(F+B+W)/m).")
|
103 |
+
baseline_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
|
104 |
+
with gr.Column(scale=4):
|
105 |
+
baseline_image=gr.Image(None, interactive=False, label="Schedule Image")
|
106 |
+
|
107 |
+
with gr.Group():
|
108 |
+
gr.Markdown("Zero Bubble Schedule")
|
109 |
+
with gr.Row():
|
110 |
+
with gr.Column(scale=1):
|
111 |
+
zb_time=gr.Textbox("", label="Longest Stage Time")
|
112 |
+
zb_bubble=gr.Textbox("", label="Bubble Rate. Calculated as (1 - longest stage time/(F+B+W)/m).")
|
113 |
+
zb_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
|
114 |
+
with gr.Column(scale=4):
|
115 |
+
zb_image=gr.Image(None, interactive=False, label="Schedule Image")
|
116 |
+
with gr.Group():
|
117 |
+
gr.Markdown("Zero Bubble V Schedule")
|
118 |
+
with gr.Row():
|
119 |
+
with gr.Column(scale=1):
|
120 |
+
zbv_time=gr.Textbox("", label="Longest Stage Time")
|
121 |
+
zbv_bubble=gr.Textbox("", label="Bubble Rate. Calculated as (1 - longest stage time/(F+B+W)/m).")
|
122 |
+
zbv_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B")
|
123 |
+
with gr.Column(scale=4):
|
124 |
+
zbv_image=gr.Image(None, interactive=False, label="Schedule Image")
|
125 |
+
button.click(calculate, inputs=[p, m, f, b, w, c, mem], outputs=[baseline_time, baseline_bubble, baseline_acceleration, baseline_image, zb_time, zb_bubble, zb_acceleration, zb_image, zbv_time, zbv_bubble, zbv_acceleration, zbv_image])
|
126 |
+
demo.launch()
|
auto_schedule.py
ADDED
@@ -0,0 +1,564 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Set
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
@dataclass
|
7 |
+
class GraphConfig:
|
8 |
+
mem_f: float = 2
|
9 |
+
mem_b: float = -1
|
10 |
+
mem_w: float = -1
|
11 |
+
max_mem: float = None
|
12 |
+
cost_f: int = 1
|
13 |
+
cost_b: int = 1
|
14 |
+
cost_w: int = 1
|
15 |
+
cost_comm: int = 0
|
16 |
+
print_scaling: int = 1
|
17 |
+
|
18 |
+
def __post_init__(self):
|
19 |
+
assert type(self.cost_f) is int
|
20 |
+
assert type(self.cost_b) is int
|
21 |
+
assert type(self.cost_w) is int
|
22 |
+
assert type(self.cost_comm) is int
|
23 |
+
assert self.mem_f + self.mem_b + self.mem_w == 0
|
24 |
+
|
25 |
+
@dataclass(eq=True, frozen=True)
|
26 |
+
class ScheduledNode:
|
27 |
+
type: str
|
28 |
+
stage: int
|
29 |
+
minibatch: int
|
30 |
+
start_time: int
|
31 |
+
completion_time: int
|
32 |
+
rollback: bool = False
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class Graph:
|
37 |
+
nstages: int
|
38 |
+
nmb: int
|
39 |
+
nnodes: int
|
40 |
+
config: GraphConfig
|
41 |
+
parents: List[Set[int]] = None
|
42 |
+
name: List[str] = None
|
43 |
+
|
44 |
+
# ID mapping:
|
45 |
+
# F[stage][minibatch]: 0..STAGE* MB
|
46 |
+
# B[stage][minibatch]: STAGE* MB .. 2 * STAGE * MB
|
47 |
+
# W[stage][minibatch]: 2 * STAGE* MB .. 3 * STAGE * MB
|
48 |
+
|
49 |
+
def get_id(self, type, stage, mb):
|
50 |
+
return type * (self.nstages * self.nmb) + stage * self.nmb + mb
|
51 |
+
|
52 |
+
def get_stage(self, id):
|
53 |
+
return (id // self.nmb) % self.nstages
|
54 |
+
|
55 |
+
def get_cost(self, id):
|
56 |
+
type = id // (self.nstages * self.nmb)
|
57 |
+
return [self.config.cost_f, self.config.cost_b, self.config.cost_w][type]
|
58 |
+
|
59 |
+
def get_mem(self, id):
|
60 |
+
type = id // (self.nstages * self.nmb)
|
61 |
+
return [self.config.mem_f, self.config.mem_b, self.config.mem_w][type]
|
62 |
+
|
63 |
+
@classmethod
|
64 |
+
def build_graph(cls, nstages, nmb, config):
|
65 |
+
nnodes = nstages * nmb * 3
|
66 |
+
g = Graph(nstages=nstages, nmb=nmb, nnodes=nnodes, config=config)
|
67 |
+
parents = []
|
68 |
+
name = []
|
69 |
+
for type in range(3):
|
70 |
+
for stage in range(nstages):
|
71 |
+
for mb in range(nmb):
|
72 |
+
p = set()
|
73 |
+
if type == 0:
|
74 |
+
name.append(f'F{mb}')
|
75 |
+
if stage > 0:
|
76 |
+
p.add(g.get_id(type, stage - 1, mb))
|
77 |
+
if mb > 0:
|
78 |
+
p.add(g.get_id(type, stage, mb - 1))
|
79 |
+
elif type == 1:
|
80 |
+
name.append(f'B{mb}')
|
81 |
+
if stage == nstages - 1:
|
82 |
+
p.add(g.get_id(0, stage, mb))
|
83 |
+
else:
|
84 |
+
p.add(g.get_id(type, stage + 1, mb))
|
85 |
+
if mb > 0:
|
86 |
+
p.add(g.get_id(type, stage, mb - 1))
|
87 |
+
elif type == 2:
|
88 |
+
name.append(f'W{mb}')
|
89 |
+
p.add(g.get_id(1, stage, mb))
|
90 |
+
if mb > 0:
|
91 |
+
p.add(g.get_id(type, stage, mb - 1))
|
92 |
+
else:
|
93 |
+
assert False
|
94 |
+
parents.append(p)
|
95 |
+
|
96 |
+
g.name = name
|
97 |
+
g.parents = parents
|
98 |
+
return g
|
99 |
+
|
100 |
+
# Manual ordering producing this kind of schedule:
|
101 |
+
# fffffffbfbfbfbfbfbwbwbwbwbwbwbwwwwww
|
102 |
+
# fffffbfbfbfbfbfbfbfbwbwbwbwbwwwwwwww
|
103 |
+
# fffbfbfbfbfbfbfbfbfbfbwbwbwwwwwwwwww
|
104 |
+
# fbfbfbfbfbfbfbfbfbfbfbfbwwwwwwwwwwww
|
105 |
+
# Returns the order index of each node on its own stage
|
106 |
+
def manual_order(
|
107 |
+
self, allow_bubble_before_first_b=False, prioritize_b=False, no_bubble_greedy=True
|
108 |
+
):
|
109 |
+
order = [0] * self.nnodes
|
110 |
+
f = [0] * self.nstages
|
111 |
+
b = [0] * self.nstages
|
112 |
+
w = [0] * self.nstages
|
113 |
+
o = [0] * self.nstages
|
114 |
+
m = [0] * self.nstages
|
115 |
+
e = [0] * self.nstages
|
116 |
+
t = [0] * self.nnodes
|
117 |
+
max_mem = self.config.max_mem or self.get_mem(self.get_id(0, 0, 0)) * self.nmb * 3
|
118 |
+
comm = self.config.cost_comm
|
119 |
+
order_str = [""] * self.nstages
|
120 |
+
stage_bubble = [0] * self.nstages
|
121 |
+
|
122 |
+
def get_max_bubble():
|
123 |
+
max_bubble = 0
|
124 |
+
for bb in stage_bubble:
|
125 |
+
max_bubble = max(max_bubble, bb)
|
126 |
+
return max_bubble
|
127 |
+
|
128 |
+
def put(stage_j, type_k):
|
129 |
+
if type_k == 0:
|
130 |
+
_i = f[stage_j]
|
131 |
+
elif type_k == 1:
|
132 |
+
_i = b[stage_j]
|
133 |
+
else:
|
134 |
+
_i = w[stage_j]
|
135 |
+
_j = stage_j
|
136 |
+
_id = self.get_id(type_k, _j, _i)
|
137 |
+
_mem = self.get_mem(_id)
|
138 |
+
_cost = self.get_cost(_id)
|
139 |
+
assert m[_j] + _mem <= max_mem
|
140 |
+
|
141 |
+
tmp = e[_j] + _cost
|
142 |
+
no_bubble = tmp
|
143 |
+
if _j > 0 and type_k == 0:
|
144 |
+
tmp = max(tmp, t[self.get_id(0, _j - 1, _i)] + comm + _cost)
|
145 |
+
if _j < self.nstages - 1 and type_k == 1:
|
146 |
+
tmp = max(tmp, t[self.get_id(1, _j + 1, _i)] + comm + _cost)
|
147 |
+
if f[_j] > 0:
|
148 |
+
stage_bubble[_j] += tmp - no_bubble
|
149 |
+
e[_j] = tmp
|
150 |
+
t[_id] = tmp
|
151 |
+
m[_j] += _mem
|
152 |
+
order[_id] = o[_j]
|
153 |
+
if type_k == 0:
|
154 |
+
f[_j] += 1
|
155 |
+
elif type_k == 1:
|
156 |
+
b[_j] += 1
|
157 |
+
else:
|
158 |
+
w[_j] += 1
|
159 |
+
o[_j] += 1
|
160 |
+
fbw = "fbw"
|
161 |
+
order_str[stage_j] += fbw[type_k]
|
162 |
+
|
163 |
+
for i in range(self.nmb):
|
164 |
+
if i == 0:
|
165 |
+
for j in range(self.nstages):
|
166 |
+
put(j, 0)
|
167 |
+
f_required = [0] * self.nstages
|
168 |
+
last_t = 0
|
169 |
+
for j in range(self.nstages - 1, -1, -1):
|
170 |
+
if j == self.nstages - 1:
|
171 |
+
last_t = t[self.get_id(0, j, i)] + self.get_cost(self.get_id(1, j, i))
|
172 |
+
continue
|
173 |
+
mem = m[j]
|
174 |
+
cost = e[j]
|
175 |
+
while True:
|
176 |
+
f_id = self.get_id(0, j, f[j] + f_required[j])
|
177 |
+
if f[j] + f_required[j] < self.nmb and mem + self.get_mem(f_id) <= max_mem:
|
178 |
+
if allow_bubble_before_first_b:
|
179 |
+
if cost + self.get_cost(f_id) > last_t + comm:
|
180 |
+
break
|
181 |
+
else:
|
182 |
+
if cost >= last_t + comm:
|
183 |
+
break
|
184 |
+
mem += self.get_mem(f_id)
|
185 |
+
cost += self.get_cost(f_id)
|
186 |
+
f_required[j] += 1
|
187 |
+
else:
|
188 |
+
break
|
189 |
+
last_t = max(cost, last_t + comm) + self.get_cost(self.get_id(1, j, i))
|
190 |
+
for j in range(self.nstages):
|
191 |
+
while j > 0 and f_required[j] > 0 and f_required[j] >= f_required[j - 1] and f[j] + f_required[j] < self.nmb:
|
192 |
+
f_required[j] -= 1
|
193 |
+
for j in range(self.nstages - 1, -1, -1):
|
194 |
+
for _ in range(f_required[j]):
|
195 |
+
put(j, 0)
|
196 |
+
put(j, 1)
|
197 |
+
continue
|
198 |
+
f_required = [0] * self.nstages
|
199 |
+
for j in range(self.nstages):
|
200 |
+
if f[j] >= self.nmb:
|
201 |
+
continue
|
202 |
+
if j + 1 < self.nstages and f[j] >= f[j + 1] + 2 and prioritize_b:
|
203 |
+
next_plus_fw = (
|
204 |
+
e[j + 1]
|
205 |
+
+ self.get_cost(self.get_id(0, j + 1, f[j + 1]))
|
206 |
+
+ self.get_cost(self.get_id(1, j + 1, b[j + 1]))
|
207 |
+
+ comm
|
208 |
+
)
|
209 |
+
if e[j] >= next_plus_fw:
|
210 |
+
continue
|
211 |
+
f_id = self.get_id(0, j, f[j])
|
212 |
+
f_mem = self.get_mem(f_id)
|
213 |
+
w_cost, w_cnt = 0, 0
|
214 |
+
mem_with_w = m[j] + f_mem
|
215 |
+
while mem_with_w > max_mem and w[j] + w_cnt < b[j]:
|
216 |
+
w_id = self.get_id(2, j, w[j] + w_cnt)
|
217 |
+
w_cost += self.get_cost(w_id)
|
218 |
+
mem_with_w += self.get_mem(w_id)
|
219 |
+
w_cnt += 1
|
220 |
+
if e[j] + self.get_cost(f_id) + w_cost <= next_plus_fw:
|
221 |
+
f_required[j] = 1
|
222 |
+
continue
|
223 |
+
|
224 |
+
w_cost, w_cnt = 0, 0
|
225 |
+
# mem_with_w = m[j]
|
226 |
+
# while w[j] + w_cnt < b[j]:
|
227 |
+
# w_id = self.get_id(2, j, w[j] + w_cnt)
|
228 |
+
# w_cost += self.get_cost(w_id)
|
229 |
+
# mem_with_w += self.get_mem(w_id)
|
230 |
+
# w_cnt += 1
|
231 |
+
# if e[j] + w_cost >= next_plus_fw:
|
232 |
+
# continue
|
233 |
+
if next_plus_fw - (e[j] + w_cost) <= get_max_bubble() - stage_bubble[j]:
|
234 |
+
# TODO: can sample here
|
235 |
+
continue
|
236 |
+
f_required[j] = 1
|
237 |
+
for j in range(self.nstages - 2, -1, -1):
|
238 |
+
f_required[j] = min(f_required[j], f_required[j + 1])
|
239 |
+
for j in range(self.nstages):
|
240 |
+
if f_required[j] == 0:
|
241 |
+
continue
|
242 |
+
f_id = self.get_id(0, j, f[j])
|
243 |
+
mem = self.get_mem(f_id)
|
244 |
+
while m[j] + mem > max_mem:
|
245 |
+
if w[j] >= b[j]:
|
246 |
+
raise ValueError("Cannot fit memory")
|
247 |
+
put(j, 2)
|
248 |
+
if j > 0:
|
249 |
+
while (
|
250 |
+
w[j] < b[j]
|
251 |
+
and e[j] + self.get_cost(self.get_id(2, j, w[j]))
|
252 |
+
<= t[self.get_id(0, j - 1, f[j])] + comm
|
253 |
+
):
|
254 |
+
put(j, 2)
|
255 |
+
if w[j] < b[j] and e[j] < t[self.get_id(0, j - 1, f[j])] + comm:
|
256 |
+
# TODO: e[j] + self.get_cost(self.get_id(2, j, w[j])) > t[self.get_id(0, j - 1, f[j])] + comm
|
257 |
+
if (
|
258 |
+
t[self.get_id(0, j - 1, f[j])] + comm - e[j]
|
259 |
+
<= get_max_bubble() - stage_bubble[j]
|
260 |
+
):
|
261 |
+
# TODO: can sample here
|
262 |
+
if no_bubble_greedy:
|
263 |
+
put(j, 2)
|
264 |
+
else:
|
265 |
+
put(j, 2)
|
266 |
+
put(j, 0)
|
267 |
+
for j in range(self.nstages - 1, -1, -1):
|
268 |
+
assert b[j] == i
|
269 |
+
b_id = self.get_id(1, j, b[j])
|
270 |
+
mem = self.get_mem(b_id)
|
271 |
+
while m[j] + mem > max_mem:
|
272 |
+
if w[j] >= b[j]:
|
273 |
+
raise ValueError("Cannot fit memory")
|
274 |
+
put(j, 2)
|
275 |
+
if j + 1 < self.nstages:
|
276 |
+
while (
|
277 |
+
w[j] < b[j]
|
278 |
+
and e[j] + self.get_cost(self.get_id(2, j, w[j]))
|
279 |
+
<= t[self.get_id(1, j + 1, i)] + comm
|
280 |
+
):
|
281 |
+
put(j, 2)
|
282 |
+
if w[j] < b[j] and e[j] < t[self.get_id(1, j + 1, i)] + comm:
|
283 |
+
# TODO: e[j] + self.get_cost(self.get_id(2, j, w[j])) > t[self.get_id(1, j + 1, i)] + comm
|
284 |
+
if (
|
285 |
+
t[self.get_id(1, j + 1, i)] + comm - e[j]
|
286 |
+
<= get_max_bubble() - stage_bubble[j]
|
287 |
+
):
|
288 |
+
# TODO: can sample here
|
289 |
+
if no_bubble_greedy:
|
290 |
+
put(j, 2)
|
291 |
+
else:
|
292 |
+
put(j, 2)
|
293 |
+
if j == 0 and f[j] == self.nmb:
|
294 |
+
while w[j] < b[j]:
|
295 |
+
put(j, 2)
|
296 |
+
put(j, 1)
|
297 |
+
|
298 |
+
for i in range(self.nstages):
|
299 |
+
while w[i] < self.nmb:
|
300 |
+
put(i, 2)
|
301 |
+
# print(f"{' ' * i}{order_str[i]} -> {e[i]}")
|
302 |
+
|
303 |
+
for i in range(self.nstages):
|
304 |
+
for j in range(self.nmb):
|
305 |
+
f_id = self.get_id(0, i, j)
|
306 |
+
b_id = self.get_id(1, i, j)
|
307 |
+
w_id = self.get_id(2, i, j)
|
308 |
+
f_cost = self.get_cost(f_id)
|
309 |
+
b_cost = self.get_cost(b_id)
|
310 |
+
w_cost = self.get_cost(w_id)
|
311 |
+
assert t[b_id] >= t[f_id] + b_cost
|
312 |
+
assert t[w_id] >= t[b_id] + w_cost, f"{i}-{j}, {t[w_id]} >= {t[b_id]} + {w_cost}"
|
313 |
+
if i > 0:
|
314 |
+
assert t[f_id] >= t[self.get_id(0, i - 1, j)] + comm + f_cost, f"{i}-{j}"
|
315 |
+
if i < self.nstages - 1:
|
316 |
+
assert t[b_id] >= t[self.get_id(1, i + 1, j)] + comm + b_cost
|
317 |
+
|
318 |
+
# print(order)
|
319 |
+
best_time = 0
|
320 |
+
for i in range(self.nstages):
|
321 |
+
time_i = (
|
322 |
+
t[self.get_id(2, i, self.nmb - 1)]
|
323 |
+
- t[self.get_id(0, i, 0)]
|
324 |
+
+ self.get_cost(self.get_id(0, i, 0))
|
325 |
+
)
|
326 |
+
best_time = max(best_time, time_i)
|
327 |
+
|
328 |
+
return order, t, best_time
|
329 |
+
|
330 |
+
|
331 |
+
def initial_solution(graph):
|
332 |
+
best_time, order, complete_time = None, None, None
|
333 |
+
for allow_bubble_before_first_b in [True, False]:
|
334 |
+
for prioritize_b in [True, False]:
|
335 |
+
for no_bubble_greedy in [True, False]:
|
336 |
+
order_t, complete_time_t, best_time_t = graph.manual_order(
|
337 |
+
allow_bubble_before_first_b=allow_bubble_before_first_b,
|
338 |
+
prioritize_b=prioritize_b,
|
339 |
+
no_bubble_greedy=no_bubble_greedy,
|
340 |
+
)
|
341 |
+
if best_time is None or best_time_t < best_time:
|
342 |
+
best_time = best_time_t
|
343 |
+
order = order_t
|
344 |
+
complete_time = complete_time_t
|
345 |
+
|
346 |
+
print_detail(graph, complete_time)
|
347 |
+
print("-" * 20, best_time, "-" * 20)
|
348 |
+
return best_time, order, complete_time
|
349 |
+
|
350 |
+
|
351 |
+
def print_detail(graph, F):
|
352 |
+
typenames = ['F', 'B', 'W']
|
353 |
+
times = []
|
354 |
+
for stage in range(graph.nstages):
|
355 |
+
stage_str = ['.'] * int(F[graph.get_id(2, stage, graph.nmb - 1)] / graph.config.print_scaling)
|
356 |
+
for _type in range(3):
|
357 |
+
for _mb in range(graph.nmb):
|
358 |
+
_id = graph.get_id(_type, stage, _mb)
|
359 |
+
end = int(F[_id] / graph.config.print_scaling)
|
360 |
+
start = int((F[_id] - graph.get_cost(_id)) / graph.config.print_scaling)
|
361 |
+
for j in range(start, end):
|
362 |
+
if j == start or j == end - 1:
|
363 |
+
stage_str[j] = typenames[_type]
|
364 |
+
elif j == start + 1:
|
365 |
+
if _mb >= 10:
|
366 |
+
stage_str[j] = str(_mb // 10)
|
367 |
+
else:
|
368 |
+
stage_str[j] = str(_mb)
|
369 |
+
elif j == start + 2 and _mb >= 10:
|
370 |
+
stage_str[j] = str(_mb % 10)
|
371 |
+
else:
|
372 |
+
stage_str[j] = "-"
|
373 |
+
_str = ""
|
374 |
+
for _c in stage_str:
|
375 |
+
_str += _c
|
376 |
+
times.append(
|
377 |
+
F[graph.get_id(2, stage, graph.nmb - 1)]
|
378 |
+
- F[graph.get_id(0, stage, 0)]
|
379 |
+
+ graph.get_cost(graph.get_id(0, stage, 0))
|
380 |
+
)
|
381 |
+
print(_str)
|
382 |
+
print('Longest stage time: ', max(times))
|
383 |
+
|
384 |
+
|
385 |
+
def ilp_results(graph, F):
|
386 |
+
typenames = ['F', 'B', 'W']
|
387 |
+
local_order = []
|
388 |
+
end_time = []
|
389 |
+
for i in range(graph.nnodes):
|
390 |
+
end_time.append(F[i])
|
391 |
+
for stage in range(graph.nstages):
|
392 |
+
order = []
|
393 |
+
for type in range(3):
|
394 |
+
for mb in range(graph.nmb):
|
395 |
+
id = graph.get_id(type, stage, mb)
|
396 |
+
order.append(
|
397 |
+
ScheduledNode(
|
398 |
+
type=typenames[type],
|
399 |
+
stage=stage,
|
400 |
+
minibatch=mb,
|
401 |
+
start_time=end_time[id] - graph.get_cost(id),
|
402 |
+
completion_time=F[id],
|
403 |
+
)
|
404 |
+
)
|
405 |
+
local_order.append(order)
|
406 |
+
# For each F/B, append a send/recv node. The timestamp of recv node is the same as send node to guarrentee a global order.
|
407 |
+
comm_id = {}
|
408 |
+
comm_id_counter = 0
|
409 |
+
post_validation_time = 0
|
410 |
+
for i in range(graph.nstages - 1, -1, -1):
|
411 |
+
warmup_f_count = -1
|
412 |
+
first_b_end = end_time[graph.get_id(1, i, 0)]
|
413 |
+
for j in range(graph.nmb):
|
414 |
+
if end_time[graph.get_id(0, i, j)] < first_b_end:
|
415 |
+
warmup_f_count += 1
|
416 |
+
assert warmup_f_count >= 0
|
417 |
+
pv_id = warmup_f_count
|
418 |
+
_id = graph.get_id(0, i, pv_id)
|
419 |
+
_cost = graph.get_cost(_id)
|
420 |
+
post_validation_time = max(post_validation_time, end_time[_id] - _cost - graph.config.cost_comm)
|
421 |
+
# post_validation_time = 0
|
422 |
+
# print(i, pv_id, post_validation_time)
|
423 |
+
for it in ["RECV_", "SEND_", ""]:
|
424 |
+
if i == 0 and it == "SEND_":
|
425 |
+
continue
|
426 |
+
if i == graph.nstages - 1 and it == "RECV_":
|
427 |
+
continue
|
428 |
+
# stage_ = i - 1 if it == "RECV_" else i
|
429 |
+
stage_ = i
|
430 |
+
local_order[stage_].append(ScheduledNode(
|
431 |
+
type=it + "POST_VALIDATION",
|
432 |
+
stage=stage_,
|
433 |
+
minibatch=0,
|
434 |
+
start_time=post_validation_time,
|
435 |
+
completion_time=post_validation_time,
|
436 |
+
))
|
437 |
+
comm_id[local_order[stage_][-1]] = comm_id_counter
|
438 |
+
comm_id_counter += 1
|
439 |
+
for stage in range(graph.nstages):
|
440 |
+
for node in local_order[stage]:
|
441 |
+
if node.type == 'F' and node.stage != graph.nstages - 1:
|
442 |
+
local_order[stage].append(
|
443 |
+
ScheduledNode(
|
444 |
+
type='SEND_FORWARD',
|
445 |
+
stage=stage,
|
446 |
+
minibatch=node.minibatch,
|
447 |
+
start_time=node.completion_time,
|
448 |
+
completion_time=node.completion_time, # TODO: consider comm cost in completion time
|
449 |
+
)
|
450 |
+
)
|
451 |
+
local_order[stage + 1].append(
|
452 |
+
ScheduledNode(
|
453 |
+
type='RECV_FORWARD',
|
454 |
+
stage=stage + 1,
|
455 |
+
minibatch=node.minibatch,
|
456 |
+
start_time=node.completion_time,
|
457 |
+
completion_time=node.completion_time, # TODO: consider comm cost in completion time
|
458 |
+
)
|
459 |
+
)
|
460 |
+
comm_id[local_order[stage][-1]] = comm_id_counter
|
461 |
+
comm_id[local_order[stage + 1][-1]] = comm_id_counter
|
462 |
+
comm_id_counter += 1
|
463 |
+
if node.type == 'B' and node.stage != 0:
|
464 |
+
local_order[stage].append(
|
465 |
+
ScheduledNode(
|
466 |
+
type='SEND_BACKWARD',
|
467 |
+
stage=stage,
|
468 |
+
minibatch=node.minibatch,
|
469 |
+
start_time=node.completion_time,
|
470 |
+
completion_time=node.completion_time, # TODO: consider comm cost in completion time
|
471 |
+
)
|
472 |
+
)
|
473 |
+
local_order[stage - 1].append(
|
474 |
+
ScheduledNode(
|
475 |
+
type='RECV_BACKWARD',
|
476 |
+
stage=stage - 1,
|
477 |
+
minibatch=node.minibatch,
|
478 |
+
start_time=node.completion_time,
|
479 |
+
completion_time=node.completion_time, # TODO: consider comm cost in completion time
|
480 |
+
)
|
481 |
+
)
|
482 |
+
comm_id[local_order[stage][-1]] = comm_id_counter
|
483 |
+
comm_id[local_order[stage - 1][-1]] = comm_id_counter
|
484 |
+
comm_id_counter += 1
|
485 |
+
for stage in range(graph.nstages):
|
486 |
+
# For nodes with the same timestamp on the same stage, communication will be prioritized.
|
487 |
+
def even_breaker(x: ScheduledNode):
|
488 |
+
# Compute nodes are always delayed.
|
489 |
+
if x.type in ['F', 'B', 'W']:
|
490 |
+
return comm_id_counter
|
491 |
+
# For comm nodes, order by their unique comm id
|
492 |
+
return comm_id[x]
|
493 |
+
|
494 |
+
local_order[stage] = list(sorted(
|
495 |
+
local_order[stage], key=lambda x: (x.start_time, even_breaker(x))
|
496 |
+
))
|
497 |
+
# If a recv with intersects with previous computation, reorder them so that recv
|
498 |
+
# is executed before computation and hence can be overlapped.
|
499 |
+
for i in range(len(local_order[stage])):
|
500 |
+
if i > 0 and local_order[stage][i - 1].type in {'F', 'B', 'W'} and \
|
501 |
+
local_order[stage][i].type.startswith('RECV') and \
|
502 |
+
"POST_VALIDATION" not in local_order[stage][i].type and \
|
503 |
+
local_order[stage][i].start_time <= local_order[stage][i - 1].completion_time:
|
504 |
+
(local_order[stage][i], local_order[stage][i - 1]) = (local_order[stage][i - 1], local_order[stage][i])
|
505 |
+
# print([(x.type, x.start_time, x.completion_time) for x in local_order[stage]])
|
506 |
+
|
507 |
+
local_order_with_rollback = [[] for _ in range(graph.nstages)]
|
508 |
+
for rank in range(graph.nstages):
|
509 |
+
rollback_comm = set()
|
510 |
+
if rank > 0:
|
511 |
+
for node in local_order[rank - 1]:
|
512 |
+
if node.type == "POST_VALIDATION":
|
513 |
+
break
|
514 |
+
if node.type == "SEND_FORWARD":
|
515 |
+
rollback_comm.add(node.minibatch)
|
516 |
+
for node in local_order[rank]:
|
517 |
+
if node.type == "RECV_FORWARD" and node.minibatch in rollback_comm:
|
518 |
+
rollback = True
|
519 |
+
rollback_comm.remove(node.minibatch)
|
520 |
+
else:
|
521 |
+
rollback = False
|
522 |
+
local_order_with_rollback[rank].append(ScheduledNode(
|
523 |
+
type=node.type,
|
524 |
+
stage=node.stage,
|
525 |
+
minibatch=node.minibatch,
|
526 |
+
start_time=node.start_time,
|
527 |
+
completion_time=node.completion_time,
|
528 |
+
rollback=rollback,
|
529 |
+
))
|
530 |
+
assert len(rollback_comm) == 0
|
531 |
+
# for node in local_order_with_rollback[rank]:
|
532 |
+
# print(f"{node.type}-{node.minibatch}-{int(node.rollback)}", end=', ')
|
533 |
+
# print()
|
534 |
+
|
535 |
+
print_detail(graph, end_time)
|
536 |
+
return local_order_with_rollback
|
537 |
+
|
538 |
+
|
539 |
+
def auto_schedule(nstages, nmb, config):
|
540 |
+
graph = Graph.build_graph(nstages, nmb, config)
|
541 |
+
|
542 |
+
best_time, order, complete_time = initial_solution(graph)
|
543 |
+
return ilp_results(graph, complete_time)
|
544 |
+
|
545 |
+
|
546 |
+
if __name__ == "__main__":
|
547 |
+
# auto_schedule(4, 12, GraphConfig(cost_f=5, cost_b=6, cost_w=4, cost_comm=0, max_mem=10))
|
548 |
+
# auto_schedule(4, 12, GraphConfig(cost_f=5, cost_b=6, cost_w=4, cost_comm=0, max_mem=14))
|
549 |
+
auto_schedule(24, 72, GraphConfig(cost_f=5, cost_b=6, cost_w=4, cost_comm=0, max_mem=100))
|
550 |
+
auto_schedule(4, 12, GraphConfig(
|
551 |
+
cost_f=5478,
|
552 |
+
cost_b=5806,
|
553 |
+
cost_w=3534,
|
554 |
+
cost_comm=200,
|
555 |
+
max_mem=32,
|
556 |
+
print_scaling=1000
|
557 |
+
))
|
558 |
+
auto_schedule(32, 16, GraphConfig(
|
559 |
+
cost_f=1,
|
560 |
+
cost_b=1,
|
561 |
+
cost_w=1,
|
562 |
+
cost_comm=0,
|
563 |
+
max_mem=64,
|
564 |
+
))
|
v_schedule.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import deque
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
@dataclass(eq=True, frozen=True)
|
5 |
+
class ScheduledNode:
|
6 |
+
type: str
|
7 |
+
chunk: int
|
8 |
+
stage: int
|
9 |
+
minibatch: int
|
10 |
+
start_time: int
|
11 |
+
completion_time: int
|
12 |
+
rollback: bool = False
|
13 |
+
|
14 |
+
|
15 |
+
class PipelineGraph(object):
|
16 |
+
def __init__(
|
17 |
+
self, n_stage, n_micro, f_cost, b_cost, w_cost, c_cost,
|
18 |
+
f_mem, b_mem, w_mem, max_mem=None,
|
19 |
+
):
|
20 |
+
self.n_node = 6 * n_stage * n_micro
|
21 |
+
self.n_stage = n_stage
|
22 |
+
self.n_micro = n_micro
|
23 |
+
self.f_cost = f_cost
|
24 |
+
self.b_cost = b_cost
|
25 |
+
self.w_cost = w_cost
|
26 |
+
self.c_cost = c_cost
|
27 |
+
self.f_mem = f_mem
|
28 |
+
self.b_mem = b_mem
|
29 |
+
self.w_mem = w_mem
|
30 |
+
self.fbw_cost = [f_cost, b_cost, w_cost]
|
31 |
+
self.fbw_mem = [f_mem, b_mem, w_mem]
|
32 |
+
self.max_mem = max_mem or f_mem * self.n_stage * 2
|
33 |
+
|
34 |
+
def get_id(self, cat, chunk, stage, micro):
|
35 |
+
return cat * 2 * self.n_stage * self.n_micro + \
|
36 |
+
chunk * self.n_stage * self.n_micro + \
|
37 |
+
stage * self.n_micro + \
|
38 |
+
micro
|
39 |
+
|
40 |
+
def try_v_schedule(self, fill_f=True, fill_b=True, approved_bubble=None):
|
41 |
+
count = []
|
42 |
+
for i in range(self.n_stage):
|
43 |
+
count.append([0] * 6)
|
44 |
+
|
45 |
+
end_time = [-1] * self.n_node
|
46 |
+
cur_time = [0] * self.n_stage
|
47 |
+
mem = [0] * self.n_stage
|
48 |
+
stage_bubble = [0] * self.n_stage
|
49 |
+
pending_w = [deque() for _ in range(self.n_stage)]
|
50 |
+
schedule = [[] for _ in range(self.n_stage)]
|
51 |
+
stage_str = [" " * i for i in range(self.n_stage)]
|
52 |
+
|
53 |
+
if approved_bubble is None:
|
54 |
+
approved_bubble = [-1] * self.n_stage
|
55 |
+
max_approved_bubble = max(approved_bubble)
|
56 |
+
|
57 |
+
def get_max_stage_bubble(stage=-1):
|
58 |
+
max_stage_bubble = 0
|
59 |
+
for bb in stage_bubble:
|
60 |
+
max_stage_bubble = max(max_stage_bubble, bb)
|
61 |
+
if stage >= 0:
|
62 |
+
max_stage_bubble = max(max_stage_bubble, max_approved_bubble - approved_bubble[stage])
|
63 |
+
return max_stage_bubble
|
64 |
+
|
65 |
+
def put_w(stage):
|
66 |
+
assert len(pending_w[stage]) > 0
|
67 |
+
_, chunk_, _ = pending_w[stage].popleft()
|
68 |
+
put(2, chunk_, stage)
|
69 |
+
|
70 |
+
def put(cat, chunk, stage, assert_cnt=True):
|
71 |
+
_tmp = _no_bubble = cur_time[stage] + self.fbw_cost[cat]
|
72 |
+
_cnt = count[stage][cat * 2 + chunk]
|
73 |
+
# assert _cnt < self.n_micro
|
74 |
+
if _cnt >= self.n_micro:
|
75 |
+
if not assert_cnt:
|
76 |
+
stage_str[stage] += " "
|
77 |
+
cur_time[stage] = _tmp # TODO
|
78 |
+
return
|
79 |
+
assert False
|
80 |
+
assert mem[stage] + self.fbw_mem[cat] <= self.max_mem
|
81 |
+
stage_str[stage] += "FfBbWw"[cat * 2 + chunk] + str(_cnt + 1) + " " * (3 - len(str(_cnt + 1)))
|
82 |
+
if cat > 0 or chunk > 0:
|
83 |
+
last_id = cat * 2 + chunk - 1
|
84 |
+
if cat < 2:
|
85 |
+
# if end_time[self.get_id(last_id // 2, last_id % 2, stage, _cnt)] < 0:
|
86 |
+
# print(cat, chunk, stage, _cnt)
|
87 |
+
# self.print_details(end_time)
|
88 |
+
assert end_time[self.get_id(last_id // 2, last_id % 2, stage, _cnt)] >= 0
|
89 |
+
else:
|
90 |
+
assert end_time[self.get_id(1, chunk, stage, _cnt)] >= 0
|
91 |
+
if chunk == 1 and cat < 2:
|
92 |
+
if stage < self.n_stage - 1:
|
93 |
+
_fa_id = self.get_id(cat, chunk, stage + 1, _cnt)
|
94 |
+
assert end_time[_fa_id] >= 0
|
95 |
+
_tmp = max(_tmp, end_time[_fa_id] + self.c_cost + self.fbw_cost[cat])
|
96 |
+
if chunk == 0 and cat < 2:
|
97 |
+
if stage > 0:
|
98 |
+
_fa_id = self.get_id(cat, chunk, stage - 1, _cnt)
|
99 |
+
# if end_time[_fa_id] < 0:
|
100 |
+
# print(cat, chunk, stage, _cnt)
|
101 |
+
# self.print_details(end_time)
|
102 |
+
assert end_time[_fa_id] >= 0, f"{cat}, {chunk}, {stage}, {_cnt}"
|
103 |
+
_tmp = max(_tmp, end_time[_fa_id] + self.c_cost + self.fbw_cost[cat])
|
104 |
+
_id = self.get_id(cat, chunk, stage, _cnt)
|
105 |
+
if count[stage][0] > 0:
|
106 |
+
stage_bubble[stage] += _tmp - _no_bubble
|
107 |
+
end_time[_id] = _tmp
|
108 |
+
cur_time[stage] = _tmp
|
109 |
+
mem[stage] += self.fbw_mem[cat]
|
110 |
+
# noinspection PyTypeChecker
|
111 |
+
schedule[stage].append((cat, chunk, _cnt))
|
112 |
+
if cat == 1:
|
113 |
+
pending_w[stage].append((2, chunk, _cnt))
|
114 |
+
count[stage][cat * 2 + chunk] += 1
|
115 |
+
|
116 |
+
for _ in range(2 * self.n_stage):
|
117 |
+
for i in range(self.n_stage):
|
118 |
+
if count[i][1] >= count[i][0]:
|
119 |
+
put(0, 0, i, assert_cnt=False)
|
120 |
+
continue
|
121 |
+
if i == self.n_stage - 1:
|
122 |
+
put(0, 1, i, assert_cnt=False)
|
123 |
+
continue
|
124 |
+
fa_id = self.get_id(0, 1, i + 1, count[i][1])
|
125 |
+
if 0 <= end_time[fa_id] < cur_time[i + 1]: # TODO
|
126 |
+
put(0, 1, i, assert_cnt=False)
|
127 |
+
else:
|
128 |
+
put(0, 0, i, assert_cnt=False)
|
129 |
+
|
130 |
+
# for i in range(self.n_stage):
|
131 |
+
# put(0, 0, i)
|
132 |
+
# for i in range(self.n_stage - 1, -1, -1):
|
133 |
+
# if i == self.n_stage - 1:
|
134 |
+
# put(0, 1, i)
|
135 |
+
# continue
|
136 |
+
# tmp = end_time[self.get_id(0, 1, i + 1, 0)] + self.c_cost
|
137 |
+
# while mem[i] + self.fbw_mem[0] * (2 + i * 2) <= self.max_mem and cur_time[i] + self.fbw_cost[0] <= tmp and count[i][0] < self.n_micro:
|
138 |
+
# for j in range(i + 1):
|
139 |
+
# put(0, 0, j)
|
140 |
+
# put(0, 1, i)
|
141 |
+
# iter_chunk_ = 0
|
142 |
+
# end_tmp = 0
|
143 |
+
# for i in range(self.n_stage):
|
144 |
+
# if i == 0:
|
145 |
+
# end_tmp = cur_time[0] + self.fbw_cost[1]
|
146 |
+
# continue
|
147 |
+
# tmp = end_tmp + self.c_cost
|
148 |
+
# while count[i][0] + count[i][1] < count[i - 1][0] + count[i - 1][1]:
|
149 |
+
# for j in range(self.n_stage - 1, i - 1, -1):
|
150 |
+
# if count[j][iter_chunk_] < self.n_micro:
|
151 |
+
# put(0, iter_chunk_, j)
|
152 |
+
# iter_chunk_ = 1 - iter_chunk_
|
153 |
+
# # while mem[i] + self.fbw_mem[0] <= self.max_mem and cur_time[i] + self.fbw_cost[0] <= tmp:
|
154 |
+
# # if iter_chunk_ == 0 and count[i][0] >= count[i - 1][0]:
|
155 |
+
# # break
|
156 |
+
# # for j in range(self.n_stage - 1, i - 1, -1):
|
157 |
+
# # if count[j][iter_chunk_] < self.n_micro:
|
158 |
+
# # put(0, iter_chunk_, j)
|
159 |
+
# # iter_chunk_ = 1 - iter_chunk_
|
160 |
+
# # end_tmp = max(tmp, cur_time[i]) + self.fbw_cost[1]
|
161 |
+
|
162 |
+
# init_bubble = get_max_stage_bubble()
|
163 |
+
# print(stage_bubble)
|
164 |
+
for _ in range(2 * self.n_micro):
|
165 |
+
# check mem before putting b
|
166 |
+
for i in range(self.n_stage):
|
167 |
+
while mem[i] + self.fbw_mem[1] > self.max_mem:
|
168 |
+
assert len(pending_w[i]) > 0
|
169 |
+
put_w(i)
|
170 |
+
b0_ranks, b1_ranks = [], []
|
171 |
+
for i in range(self.n_stage):
|
172 |
+
if count[i][3] >= count[i][2]:
|
173 |
+
b0_ranks.append(i)
|
174 |
+
elif i == self.n_stage - 1:
|
175 |
+
b1_ranks.append(i)
|
176 |
+
else:
|
177 |
+
fa_id = self.get_id(1, 1, i + 1, count[i][3])
|
178 |
+
if end_time[fa_id] >= 0 or count[i][2] >= self.n_micro:
|
179 |
+
b1_ranks.append(i)
|
180 |
+
else:
|
181 |
+
b0_ranks.append(i)
|
182 |
+
b_ranks = []
|
183 |
+
# put b1
|
184 |
+
for i in reversed(b1_ranks):
|
185 |
+
b_ranks.append((i, 1))
|
186 |
+
# put b0
|
187 |
+
for i in b0_ranks:
|
188 |
+
b_ranks.append((i, 0))
|
189 |
+
for i, _chunk_ in b_ranks:
|
190 |
+
fa_id = -1
|
191 |
+
if _chunk_ == 1 and i < self.n_stage - 1:
|
192 |
+
fa_id = self.get_id(1, 1, i + 1, count[i][3])
|
193 |
+
if _chunk_ == 0 and i > 0:
|
194 |
+
fa_id = self.get_id(1, 0, i - 1, count[i][2])
|
195 |
+
while len(pending_w[i]) > 0 and fa_id >= 0 and end_time[fa_id] + self.c_cost >= cur_time[i] + self.fbw_cost[2]:
|
196 |
+
# fill the bubble
|
197 |
+
put_w(i)
|
198 |
+
if len(pending_w[i]) > 0 and end_time[fa_id] + self.c_cost - cur_time[i] > get_max_stage_bubble(i) - stage_bubble[i]:
|
199 |
+
if _chunk_ == 1:
|
200 |
+
put_w(i)
|
201 |
+
elif fill_b:
|
202 |
+
put_w(i)
|
203 |
+
put(1, _chunk_, i)
|
204 |
+
|
205 |
+
# put f
|
206 |
+
for i in range(self.n_stage):
|
207 |
+
if count[i][1] >= self.n_micro:
|
208 |
+
continue
|
209 |
+
put_item = None
|
210 |
+
if count[i][1] >= count[i][0]:
|
211 |
+
put_item = 0
|
212 |
+
elif i == self.n_stage - 1:
|
213 |
+
put_item = 1
|
214 |
+
else:
|
215 |
+
if end_time[self.get_id(0, 1, i + 1, count[i][1])] >= 0:
|
216 |
+
put_item = 1
|
217 |
+
elif count[i][0] < self.n_micro:
|
218 |
+
if i == 0:
|
219 |
+
put_item = 0
|
220 |
+
elif end_time[self.get_id(0, 0, i - 1, count[i][0])] >= 0:
|
221 |
+
put_item = 0
|
222 |
+
if put_item is None:
|
223 |
+
continue
|
224 |
+
# check mem before putting f
|
225 |
+
while mem[i] + self.fbw_mem[0] > self.max_mem:
|
226 |
+
assert len(pending_w[i]) > 0
|
227 |
+
put_w(i)
|
228 |
+
fa_id = -1
|
229 |
+
if put_item == 0 and i > 0:
|
230 |
+
fa_id = self.get_id(0, 0, i - 1, count[i][0])
|
231 |
+
if put_item == 1 and i < self.n_stage - 1:
|
232 |
+
fa_id = self.get_id(0, 1, i + 1, count[i][1])
|
233 |
+
while len(pending_w[i]) > 0 and fa_id >= 0 and end_time[fa_id] + self.c_cost >= cur_time[i] + self.fbw_cost[2]:
|
234 |
+
# fill the bubble
|
235 |
+
put_w(i)
|
236 |
+
if len(pending_w[i]) > 0 and end_time[fa_id] + self.c_cost - cur_time[i] > get_max_stage_bubble(i) - stage_bubble[i]:
|
237 |
+
if fill_f:
|
238 |
+
put_w(i)
|
239 |
+
put(0, put_item, i)
|
240 |
+
|
241 |
+
for i in range(self.n_stage):
|
242 |
+
while len(pending_w[i]) > 0:
|
243 |
+
put_w(i)
|
244 |
+
|
245 |
+
# for i in range(self.n_stage):
|
246 |
+
# print(stage_str[i])
|
247 |
+
|
248 |
+
max_bubble = get_max_stage_bubble()
|
249 |
+
expected_time = sum(self.fbw_cost) * self.n_micro * 2
|
250 |
+
bubble_rate = max_bubble / expected_time
|
251 |
+
# print("%6.4f" % bubble_rate, "->", stage_bubble)
|
252 |
+
if max_approved_bubble < 0 or max_bubble < max_approved_bubble:
|
253 |
+
_schedule, _end_time, _max_bubble = self.try_v_schedule(
|
254 |
+
fill_f=fill_f, fill_b=fill_b,
|
255 |
+
approved_bubble=stage_bubble,
|
256 |
+
)
|
257 |
+
if _max_bubble < max_bubble:
|
258 |
+
return _schedule, _end_time, _max_bubble
|
259 |
+
# print("%2d %3d, [%5d %5d %5d], %6d -> %6.4f %6.4f" % \
|
260 |
+
# (self.n_stage, self.n_micro, *self.fbw_cost, self.max_mem // self.f_mem, init_bubble / expected_time, bubble_rate), max_bubble)
|
261 |
+
return schedule, end_time, max_bubble
|
262 |
+
|
263 |
+
def print_details(self, end_time, print_scaling=1):
|
264 |
+
for stage in range(self.n_stage):
|
265 |
+
stage_str = ['.'] * int(max(end_time) / print_scaling)
|
266 |
+
for _cat in range(3):
|
267 |
+
for _chunk in range(2):
|
268 |
+
for _micro in range(self.n_micro):
|
269 |
+
_id = self.get_id(_cat, _chunk, stage, _micro)
|
270 |
+
if end_time[_id] < 0:
|
271 |
+
continue
|
272 |
+
end = int(end_time[_id] / print_scaling)
|
273 |
+
start = int((end_time[_id] - self.fbw_cost[_cat]) / print_scaling)
|
274 |
+
for j in range(start, end):
|
275 |
+
if j == start or j == end - 1:
|
276 |
+
stage_str[j] = "FfBbWw"[_cat * 2 + _chunk]
|
277 |
+
elif j == start + 1:
|
278 |
+
if _micro >= 10:
|
279 |
+
stage_str[j] = str(_micro // 10)
|
280 |
+
else:
|
281 |
+
stage_str[j] = str(_micro)
|
282 |
+
elif j == start + 2 and _micro >= 10:
|
283 |
+
stage_str[j] = str(_micro % 10)
|
284 |
+
else:
|
285 |
+
stage_str[j] = "-"
|
286 |
+
_str = ""
|
287 |
+
for _c in stage_str:
|
288 |
+
_str += _c
|
289 |
+
print(_str)
|
290 |
+
|
291 |
+
def get_v_schedule(self):
|
292 |
+
schedule, end_time, max_bubble = None, None, None
|
293 |
+
expected_time = sum(self.fbw_cost) * self.n_micro * 2
|
294 |
+
for fill_b in [True, False]:
|
295 |
+
for fill_f in [True, False]:
|
296 |
+
_schedule, _end_time, _max_bubble = self.try_v_schedule(
|
297 |
+
fill_b=fill_b, fill_f=fill_f
|
298 |
+
)
|
299 |
+
# print("")
|
300 |
+
if max_bubble is None or _max_bubble < max_bubble:
|
301 |
+
max_bubble = _max_bubble
|
302 |
+
schedule = _schedule
|
303 |
+
end_time = _end_time
|
304 |
+
# self.print_details(end_time, print_scaling=1)
|
305 |
+
bubble_rate = max_bubble / expected_time
|
306 |
+
print("%2d %3d, [%5d %5d %5d], %6d -> %6.4f" % \
|
307 |
+
(self.n_stage, self.n_micro, *self.fbw_cost, self.max_mem // self.f_mem, bubble_rate))
|
308 |
+
local_order = [[] for _ in range(self.n_stage)]
|
309 |
+
comm_id = {}
|
310 |
+
comm_id_counter = 0
|
311 |
+
post_validation_time = 0
|
312 |
+
for i in range(self.n_stage - 1, -1, -1):
|
313 |
+
pv_id = min(2 * (self.n_stage - 1 - i), self.n_micro - 1)
|
314 |
+
post_validation_time = max(post_validation_time, end_time[self.get_id(0, 0, i, pv_id)] - self.fbw_cost[0] - self.c_cost)
|
315 |
+
# post_validation_time = 0
|
316 |
+
# print(i, pv_id, post_validation_time)
|
317 |
+
for it in ["RECV_", "SEND_", ""]:
|
318 |
+
if i == 0 and it == "SEND_":
|
319 |
+
continue
|
320 |
+
if i == self.n_stage - 1 and it == "RECV_":
|
321 |
+
continue
|
322 |
+
# stage_ = i - 1 if it == "RECV_" else i
|
323 |
+
stage_ = i
|
324 |
+
local_order[stage_].append(ScheduledNode(
|
325 |
+
type=it + "POST_VALIDATION",
|
326 |
+
chunk=0,
|
327 |
+
stage=stage_,
|
328 |
+
minibatch=0,
|
329 |
+
start_time=post_validation_time,
|
330 |
+
completion_time=post_validation_time,
|
331 |
+
))
|
332 |
+
comm_id[local_order[stage_][-1]] = comm_id_counter
|
333 |
+
comm_id_counter += 1
|
334 |
+
for i in range(self.n_stage):
|
335 |
+
for _cat_, _chunk_, _micro_ in schedule[i]:
|
336 |
+
complete_time = end_time[self.get_id(_cat_, _chunk_, i, _micro_)]
|
337 |
+
local_order[i].append(ScheduledNode(
|
338 |
+
type="FBW"[_cat_],
|
339 |
+
chunk=_chunk_ if _cat_ == 0 else 1 - _chunk_,
|
340 |
+
stage=i,
|
341 |
+
minibatch=_micro_,
|
342 |
+
start_time=complete_time - self.fbw_cost[_cat_],
|
343 |
+
completion_time=complete_time,
|
344 |
+
))
|
345 |
+
if _cat_ == 2: # no communication for W
|
346 |
+
continue
|
347 |
+
cat_str = "FORWARD" if _cat_ == 0 else "BACKWARD"
|
348 |
+
def communicate(send_recv, stage_):
|
349 |
+
# noinspection PyTypeChecker
|
350 |
+
local_order[stage_].append(ScheduledNode(
|
351 |
+
type=send_recv + cat_str,
|
352 |
+
chunk=_chunk_ if _cat_ == 0 else 1 - _chunk_,
|
353 |
+
stage=stage_,
|
354 |
+
minibatch=_micro_,
|
355 |
+
start_time=complete_time,
|
356 |
+
completion_time=complete_time,
|
357 |
+
))
|
358 |
+
comm_id[local_order[stage_][-1]] = comm_id_counter
|
359 |
+
|
360 |
+
if _chunk_ == 1 and i > 0:
|
361 |
+
communicate("SEND_", i)
|
362 |
+
communicate("RECV_", i - 1)
|
363 |
+
if _chunk_ == 0 and i < self.n_stage - 1:
|
364 |
+
communicate("SEND_", i)
|
365 |
+
communicate("RECV_", i + 1)
|
366 |
+
comm_id_counter += 1
|
367 |
+
for rank in range(self.n_stage):
|
368 |
+
# For nodes with the same timestamp on the same stage, communication will be prioritized.
|
369 |
+
def even_breaker(x: ScheduledNode):
|
370 |
+
# Compute nodes are always delayed.
|
371 |
+
if x.type in ['F', 'B', 'W']:
|
372 |
+
return comm_id_counter
|
373 |
+
# For comm nodes, order by their unique comm id
|
374 |
+
return comm_id[x]
|
375 |
+
|
376 |
+
local_order[rank] = list(sorted(
|
377 |
+
local_order[rank],
|
378 |
+
key=lambda x: (x.start_time, even_breaker(x))
|
379 |
+
))
|
380 |
+
# If a recv with intersects with previous computation, reorder them so that recv
|
381 |
+
# is executed before computation and hence can be overlapped.
|
382 |
+
for i in range(len(local_order[rank])):
|
383 |
+
if i > 0 and local_order[rank][i - 1].type in {'F', 'B', 'W'} and \
|
384 |
+
local_order[rank][i].type.startswith('RECV') and \
|
385 |
+
"POST_VALIDATION" not in local_order[rank][i].type and \
|
386 |
+
local_order[rank][i].start_time <= local_order[rank][i - 1].completion_time:
|
387 |
+
local_order[rank][i], local_order[rank][i - 1] = local_order[rank][i - 1], local_order[rank][i]
|
388 |
+
|
389 |
+
local_order_with_rollback = [[] for _ in range(self.n_stage)]
|
390 |
+
for rank in range(self.n_stage):
|
391 |
+
rollback_comm = set()
|
392 |
+
if rank > 0:
|
393 |
+
for node in local_order[rank - 1]:
|
394 |
+
if node.type == "POST_VALIDATION":
|
395 |
+
break
|
396 |
+
if node.type == "SEND_FORWARD":
|
397 |
+
assert node.chunk == 0
|
398 |
+
rollback_comm.add(node.minibatch)
|
399 |
+
for node in local_order[rank]:
|
400 |
+
if node.type == "RECV_FORWARD" and node.chunk == 0 and node.minibatch in rollback_comm:
|
401 |
+
rollback = True
|
402 |
+
rollback_comm.remove(node.minibatch)
|
403 |
+
else:
|
404 |
+
rollback = False
|
405 |
+
local_order_with_rollback[rank].append(ScheduledNode(
|
406 |
+
type=node.type,
|
407 |
+
chunk=node.chunk,
|
408 |
+
stage=node.stage,
|
409 |
+
minibatch=node.minibatch,
|
410 |
+
start_time=node.start_time,
|
411 |
+
completion_time=node.completion_time,
|
412 |
+
rollback=rollback,
|
413 |
+
))
|
414 |
+
assert len(rollback_comm) == 0
|
415 |
+
for node in local_order_with_rollback[rank]:
|
416 |
+
print(f"{node.type}-{node.minibatch}-{int(node.rollback)}", end=', ')
|
417 |
+
print()
|
418 |
+
|
419 |
+
return local_order_with_rollback
|
420 |
+
|
421 |
+
|
422 |
+
if __name__ == '__main__':
|
423 |
+
settings = [
|
424 |
+
# p, n, f, b, w, c, h, a, l
|
425 |
+
# (8, 24, 18522, 18086, 9337, 601, 2304, 24, 24),
|
426 |
+
# (8, 32, 18513, 18086, 9331, 626, 2304, 24, 24),
|
427 |
+
# (8, 64, 18546, 18097, 9321, 762, 2304, 24, 24),
|
428 |
+
# (8, 24, 29718, 29444, 19927, 527, 4096, 32, 32),
|
429 |
+
# (8, 32, 29802, 29428, 19530, 577, 4096, 32, 32),
|
430 |
+
# (8, 64, 29935, 29621, 19388, 535, 4096, 32, 32),
|
431 |
+
# (16, 48, 11347, 11248, 8132, 377, 5120, 40, 48),
|
432 |
+
# (16, 64, 11307, 11254, 8101, 379, 5120, 40, 48),
|
433 |
+
# (16, 128, 11325, 11308, 8109, 378, 5120, 40, 48),
|
434 |
+
# (32, 96, 10419, 10207, 7715, 408, 6144, 48, 64),
|
435 |
+
# (32, 128, 10408, 10204, 7703, 408, 6144, 48, 64),
|
436 |
+
# (32, 256, 10402, 10248, 7698, 460, 6144, 48, 64),
|
437 |
+
(4, 8, 6, 4, 4, 1, 4096, 32, 32),
|
438 |
+
# (8, 24, 29444, 29718, 19927, 527, 4096, 32, 32),
|
439 |
+
]
|
440 |
+
s = 1024
|
441 |
+
|
442 |
+
# h, a, s = 4096, 32, 1024
|
443 |
+
# cost_f, cost_b, cost_w, cost_c = 29718, 29444, 19927, 527
|
444 |
+
for p, n, f, b, w, c, h, a, l in settings:
|
445 |
+
mem_f = 34 * h + 5 * a * s
|
446 |
+
mem_w = - 32 * h
|
447 |
+
mem_b = - mem_w - mem_f
|
448 |
+
for m_offset in range(p + 1):
|
449 |
+
graph = PipelineGraph(
|
450 |
+
n_stage=p,
|
451 |
+
n_micro=n,
|
452 |
+
f_cost=f,
|
453 |
+
b_cost=b,
|
454 |
+
w_cost=w,
|
455 |
+
c_cost=c,
|
456 |
+
f_mem=mem_f,
|
457 |
+
b_mem=mem_b,
|
458 |
+
w_mem=mem_w,
|
459 |
+
max_mem=mem_f * (p * 2 + m_offset),
|
460 |
+
)
|
461 |
+
graph.get_v_schedule()
|