Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import json | |
import numpy as np | |
import os | |
import tempfile | |
import unittest | |
import pycocotools.mask as mask_util | |
from detectron2.data import DatasetCatalog, MetadataCatalog | |
from detectron2.data.datasets.coco import convert_to_coco_dict, load_coco_json | |
from detectron2.structures import BoxMode | |
def make_mask(): | |
""" | |
Makes a donut shaped binary mask. | |
""" | |
H = 100 | |
W = 100 | |
mask = np.zeros([H, W], dtype=np.uint8) | |
for x in range(W): | |
for y in range(H): | |
d = np.linalg.norm(np.array([W, H]) / 2 - np.array([x, y])) | |
if d > 10 and d < 20: | |
mask[y, x] = 1 | |
return mask | |
def uncompressed_rle(mask): | |
l = mask.flatten(order="F").tolist() | |
counts = [] | |
p = False | |
cnt = 0 | |
for i in l: | |
if i == p: | |
cnt += 1 | |
else: | |
counts.append(cnt) | |
p = i | |
cnt = 1 | |
counts.append(cnt) | |
return {"counts": counts, "size": [mask.shape[0], mask.shape[1]]} | |
def make_dataset_dicts(mask, compressed: bool = True): | |
""" | |
Returns a list of dicts that represents a single COCO data point for | |
object detection. The single instance given by `mask` is represented by | |
RLE, either compressed or uncompressed. | |
""" | |
record = {} | |
record["file_name"] = "test" | |
record["image_id"] = 0 | |
record["height"] = mask.shape[0] | |
record["width"] = mask.shape[1] | |
y, x = np.nonzero(mask) | |
if compressed: | |
segmentation = mask_util.encode(np.asarray(mask, order="F")) | |
else: | |
segmentation = uncompressed_rle(mask) | |
min_x = np.min(x) | |
max_x = np.max(x) | |
min_y = np.min(y) | |
max_y = np.max(y) | |
obj = { | |
"bbox": [min_x, min_y, max_x, max_y], | |
"bbox_mode": BoxMode.XYXY_ABS, | |
"category_id": 0, | |
"iscrowd": 0, | |
"segmentation": segmentation, | |
} | |
record["annotations"] = [obj] | |
return [record] | |
class TestRLEToJson(unittest.TestCase): | |
def test(self): | |
# Make a dummy dataset. | |
mask = make_mask() | |
DatasetCatalog.register("test_dataset", lambda: make_dataset_dicts(mask)) | |
MetadataCatalog.get("test_dataset").set(thing_classes=["test_label"]) | |
# Dump to json. | |
json_dict = convert_to_coco_dict("test_dataset") | |
with tempfile.TemporaryDirectory() as tmpdir: | |
json_file_name = os.path.join(tmpdir, "test.json") | |
with open(json_file_name, "w") as f: | |
json.dump(json_dict, f) | |
# Load from json. | |
dicts = load_coco_json(json_file_name, "") | |
# Check the loaded mask matches the original. | |
anno = dicts[0]["annotations"][0] | |
loaded_mask = mask_util.decode(anno["segmentation"]) | |
self.assertTrue(np.array_equal(loaded_mask, mask)) | |
DatasetCatalog.pop("test_dataset") | |
MetadataCatalog.pop("test_dataset") | |
def test_uncompressed_RLE(self): | |
mask = make_mask() | |
rle = mask_util.encode(np.asarray(mask, order="F")) | |
uncompressed = uncompressed_rle(mask) | |
compressed = mask_util.frPyObjects(uncompressed, *rle["size"]) | |
self.assertEqual(rle, compressed) | |
class TestConvertCOCO(unittest.TestCase): | |
def generate_data(): | |
record = { | |
"file_name": "test", | |
"image_id": 0, | |
"height": 100, | |
"width": 100, | |
"annotations": [ | |
{ | |
"bbox": [10, 10, 10, 10, 5], | |
"bbox_mode": BoxMode.XYWHA_ABS, | |
"category_id": 0, | |
"iscrowd": 0, | |
}, | |
{ | |
"bbox": [15, 15, 3, 3], | |
"bbox_mode": BoxMode.XYXY_ABS, | |
"category_id": 0, | |
"iscrowd": 0, | |
}, | |
], | |
} | |
return [record] | |
def test_convert_to_coco(self): | |
DatasetCatalog.register("test_dataset", lambda: TestConvertCOCO.generate_data()) | |
MetadataCatalog.get("test_dataset").set(thing_classes=["test_label"]) | |
convert_to_coco_dict("test_dataset") | |
DatasetCatalog.pop("test_dataset") | |
MetadataCatalog.pop("test_dataset") | |