File size: 4,241 Bytes
a9a0ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) Facebook, Inc. and its affiliates.
import json
import numpy as np
import os
import tempfile
import unittest
import pycocotools.mask as mask_util

from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets.coco import convert_to_coco_dict, load_coco_json
from detectron2.structures import BoxMode


def make_mask():
    """
    Makes a donut shaped binary mask.
    """
    H = 100
    W = 100
    mask = np.zeros([H, W], dtype=np.uint8)
    for x in range(W):
        for y in range(H):
            d = np.linalg.norm(np.array([W, H]) / 2 - np.array([x, y]))
            if d > 10 and d < 20:
                mask[y, x] = 1
    return mask


def uncompressed_rle(mask):
    l = mask.flatten(order="F").tolist()
    counts = []
    p = False
    cnt = 0
    for i in l:
        if i == p:
            cnt += 1
        else:
            counts.append(cnt)
            p = i
            cnt = 1
    counts.append(cnt)
    return {"counts": counts, "size": [mask.shape[0], mask.shape[1]]}


def make_dataset_dicts(mask, compressed: bool = True):
    """
    Returns a list of dicts that represents a single COCO data point for
    object detection. The single instance given by `mask` is represented by
    RLE, either compressed or uncompressed.
    """
    record = {}
    record["file_name"] = "test"
    record["image_id"] = 0
    record["height"] = mask.shape[0]
    record["width"] = mask.shape[1]

    y, x = np.nonzero(mask)
    if compressed:
        segmentation = mask_util.encode(np.asarray(mask, order="F"))
    else:
        segmentation = uncompressed_rle(mask)
    min_x = np.min(x)
    max_x = np.max(x)
    min_y = np.min(y)
    max_y = np.max(y)
    obj = {
        "bbox": [min_x, min_y, max_x, max_y],
        "bbox_mode": BoxMode.XYXY_ABS,
        "category_id": 0,
        "iscrowd": 0,
        "segmentation": segmentation,
    }
    record["annotations"] = [obj]
    return [record]


class TestRLEToJson(unittest.TestCase):
    def test(self):
        # Make a dummy dataset.
        mask = make_mask()
        DatasetCatalog.register("test_dataset", lambda: make_dataset_dicts(mask))
        MetadataCatalog.get("test_dataset").set(thing_classes=["test_label"])

        # Dump to json.
        json_dict = convert_to_coco_dict("test_dataset")
        with tempfile.TemporaryDirectory() as tmpdir:
            json_file_name = os.path.join(tmpdir, "test.json")
            with open(json_file_name, "w") as f:
                json.dump(json_dict, f)
            # Load from json.
            dicts = load_coco_json(json_file_name, "")

        # Check the loaded mask matches the original.
        anno = dicts[0]["annotations"][0]
        loaded_mask = mask_util.decode(anno["segmentation"])
        self.assertTrue(np.array_equal(loaded_mask, mask))
        DatasetCatalog.pop("test_dataset")
        MetadataCatalog.pop("test_dataset")

    def test_uncompressed_RLE(self):
        mask = make_mask()
        rle = mask_util.encode(np.asarray(mask, order="F"))
        uncompressed = uncompressed_rle(mask)
        compressed = mask_util.frPyObjects(uncompressed, *rle["size"])
        self.assertEqual(rle, compressed)


class TestConvertCOCO(unittest.TestCase):
    @staticmethod
    def generate_data():
        record = {
            "file_name": "test",
            "image_id": 0,
            "height": 100,
            "width": 100,
            "annotations": [
                {
                    "bbox": [10, 10, 10, 10, 5],
                    "bbox_mode": BoxMode.XYWHA_ABS,
                    "category_id": 0,
                    "iscrowd": 0,
                },
                {
                    "bbox": [15, 15, 3, 3],
                    "bbox_mode": BoxMode.XYXY_ABS,
                    "category_id": 0,
                    "iscrowd": 0,
                },
            ],
        }

        return [record]

    def test_convert_to_coco(self):
        DatasetCatalog.register("test_dataset", lambda: TestConvertCOCO.generate_data())
        MetadataCatalog.get("test_dataset").set(thing_classes=["test_label"])
        convert_to_coco_dict("test_dataset")
        DatasetCatalog.pop("test_dataset")
        MetadataCatalog.pop("test_dataset")