Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,241 Bytes
a9a0ec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# Copyright (c) Facebook, Inc. and its affiliates.
import json
import numpy as np
import os
import tempfile
import unittest
import pycocotools.mask as mask_util
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.data.datasets.coco import convert_to_coco_dict, load_coco_json
from detectron2.structures import BoxMode
def make_mask():
"""
Makes a donut shaped binary mask.
"""
H = 100
W = 100
mask = np.zeros([H, W], dtype=np.uint8)
for x in range(W):
for y in range(H):
d = np.linalg.norm(np.array([W, H]) / 2 - np.array([x, y]))
if d > 10 and d < 20:
mask[y, x] = 1
return mask
def uncompressed_rle(mask):
l = mask.flatten(order="F").tolist()
counts = []
p = False
cnt = 0
for i in l:
if i == p:
cnt += 1
else:
counts.append(cnt)
p = i
cnt = 1
counts.append(cnt)
return {"counts": counts, "size": [mask.shape[0], mask.shape[1]]}
def make_dataset_dicts(mask, compressed: bool = True):
"""
Returns a list of dicts that represents a single COCO data point for
object detection. The single instance given by `mask` is represented by
RLE, either compressed or uncompressed.
"""
record = {}
record["file_name"] = "test"
record["image_id"] = 0
record["height"] = mask.shape[0]
record["width"] = mask.shape[1]
y, x = np.nonzero(mask)
if compressed:
segmentation = mask_util.encode(np.asarray(mask, order="F"))
else:
segmentation = uncompressed_rle(mask)
min_x = np.min(x)
max_x = np.max(x)
min_y = np.min(y)
max_y = np.max(y)
obj = {
"bbox": [min_x, min_y, max_x, max_y],
"bbox_mode": BoxMode.XYXY_ABS,
"category_id": 0,
"iscrowd": 0,
"segmentation": segmentation,
}
record["annotations"] = [obj]
return [record]
class TestRLEToJson(unittest.TestCase):
def test(self):
# Make a dummy dataset.
mask = make_mask()
DatasetCatalog.register("test_dataset", lambda: make_dataset_dicts(mask))
MetadataCatalog.get("test_dataset").set(thing_classes=["test_label"])
# Dump to json.
json_dict = convert_to_coco_dict("test_dataset")
with tempfile.TemporaryDirectory() as tmpdir:
json_file_name = os.path.join(tmpdir, "test.json")
with open(json_file_name, "w") as f:
json.dump(json_dict, f)
# Load from json.
dicts = load_coco_json(json_file_name, "")
# Check the loaded mask matches the original.
anno = dicts[0]["annotations"][0]
loaded_mask = mask_util.decode(anno["segmentation"])
self.assertTrue(np.array_equal(loaded_mask, mask))
DatasetCatalog.pop("test_dataset")
MetadataCatalog.pop("test_dataset")
def test_uncompressed_RLE(self):
mask = make_mask()
rle = mask_util.encode(np.asarray(mask, order="F"))
uncompressed = uncompressed_rle(mask)
compressed = mask_util.frPyObjects(uncompressed, *rle["size"])
self.assertEqual(rle, compressed)
class TestConvertCOCO(unittest.TestCase):
@staticmethod
def generate_data():
record = {
"file_name": "test",
"image_id": 0,
"height": 100,
"width": 100,
"annotations": [
{
"bbox": [10, 10, 10, 10, 5],
"bbox_mode": BoxMode.XYWHA_ABS,
"category_id": 0,
"iscrowd": 0,
},
{
"bbox": [15, 15, 3, 3],
"bbox_mode": BoxMode.XYXY_ABS,
"category_id": 0,
"iscrowd": 0,
},
],
}
return [record]
def test_convert_to_coco(self):
DatasetCatalog.register("test_dataset", lambda: TestConvertCOCO.generate_data())
MetadataCatalog.get("test_dataset").set(thing_classes=["test_label"])
convert_to_coco_dict("test_dataset")
DatasetCatalog.pop("test_dataset")
MetadataCatalog.pop("test_dataset")
|