pytorch/YOLOv5

#1
by Liuli - opened
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -1,7 +1,7 @@
1
  import gradio as gr
2
  import torch
3
  from PIL import Image
4
- import os
5
  # Images
6
  torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
7
  torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/bus.jpg', 'bus.jpg')
@@ -9,19 +9,18 @@ torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master
9
  # Model
10
  model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update
11
 
 
12
  def yolo(im, size=640):
13
  g = (size / max(im.size)) # gain
14
  im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
15
 
16
  results = model(im) # inference
17
  results.render() # updates results.imgs with boxes and labels
18
- results.save()
19
- os.system("ls")
20
- return "out.png"
21
 
22
 
23
  inputs = gr.inputs.Image(type='pil', label="Original Image")
24
- outputs = gr.outputs.Image(type="file", label="Output Image")
25
 
26
  title = "YOLOv5"
27
  description = "YOLOv5 Gradio demo for object detection. Upload an image or click an example image to use."
 
1
  import gradio as gr
2
  import torch
3
  from PIL import Image
4
+
5
  # Images
6
  torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
7
  torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/bus.jpg', 'bus.jpg')
 
9
  # Model
10
  model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # force_reload=True to update
11
 
12
+
13
  def yolo(im, size=640):
14
  g = (size / max(im.size)) # gain
15
  im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
16
 
17
  results = model(im) # inference
18
  results.render() # updates results.imgs with boxes and labels
19
+ return Image.fromarray(results.imgs[0])
 
 
20
 
21
 
22
  inputs = gr.inputs.Image(type='pil', label="Original Image")
23
+ outputs = gr.outputs.Image(type="pil", label="Output Image")
24
 
25
  title = "YOLOv5"
26
  description = "YOLOv5 Gradio demo for object detection. Upload an image or click an example image to use."