Spaces:
Running
Running
File size: 13,763 Bytes
3efe6ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_io as tfio
import csv
from scipy.io import wavfile
import scipy
import librosa
import soundfile as sf
import time
import soundfile as sf
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from transformers import AutoProcessor
from transformers import BarkModel
from optimum.bettertransformer import BetterTransformer
import torch
from nemo.collections.tts.models import FastPitchModel
from nemo.collections.tts.models import HifiGanModel
from deep_translator import GoogleTranslator
from haystack.document_stores import InMemoryDocumentStore
from haystack.nodes import EmbeddingRetriever
# --- Load models ---
#Load a model from tensorflow hub
def load_model_hub(model_url):
model = hub.load(model_url)
return model
# Load a model from the project folder
def load_model_file(model_path):
interpreter = tf.lite.Interpreter(model_path)
interpreter.allocate_tensors()
return interpreter
# --- Initialize models ---
def initialize_text_to_speech_model():
spec_generator = FastPitchModel.from_pretrained("nvidia/tts_en_fastpitch")
# Load vocoder
model = HifiGanModel.from_pretrained(model_name="nvidia/tts_hifigan")
return spec_generator, model
def initialize_tt5_model():
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
from datasets import load_dataset
dataset = load_dataset("pedropauletti/librispeech-portuguese")
model = SpeechT5ForTextToSpeech.from_pretrained("pedropauletti/speecht5_finetuned_librispeech_pt")
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
example = dataset["test"][100]
speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
return model, processor, vocoder, speaker_embeddings
def load_qa_model():
document_store = InMemoryDocumentStore()
retriever = EmbeddingRetriever(
document_store=document_store,
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
use_gpu=False,
scale_score=False,
)
# Get dataframe with columns "question", "answer" and some custom metadata
df = pd.read_csv('content/social-faq.csv', on_bad_lines='skip', delimiter=';')
# Minimal cleaning
df.fillna(value="", inplace=True)
df["question"] = df["question"].apply(lambda x: x.strip())
questions = list(df["question"].values)
df["embedding"] = retriever.embed_queries(queries=questions).tolist()
df = df.rename(columns={"question": "content"})
# Convert Dataframe to list of dicts and index them in our DocumentStore
docs_to_index = df.to_dict(orient="records")
document_store.write_documents(docs_to_index)
return retriever
# --- Audio pre-processing ---
# Utility functions for loading audio files and making sure the sample rate is correct.
@tf.function
def load_wav_16k_mono(filename):
""" Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio. """
file_contents = tf.io.read_file(filename)
wav, sample_rate = tf.audio.decode_wav(
file_contents,
desired_channels=1)
wav = tf.squeeze(wav, axis=-1)
sample_rate = tf.cast(sample_rate, dtype=tf.int64)
wav = tfio.audio.resample(wav, rate_in=sample_rate, rate_out=16000)
return wav
def load_wav_16k_mono_librosa(filename):
""" Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio using librosa. """
wav, sample_rate = librosa.load(filename, sr=16000, mono=True)
return wav
def load_wav_16k_mono_soundfile(filename):
""" Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio using soundfile. """
wav, sample_rate = sf.read(filename, dtype='float32')
# Resample to 16 kHz if necessary
if sample_rate != 16000:
wav = librosa.resample(wav, orig_sr=sample_rate, target_sr=16000)
return wav
# --- History ---
def updateHistory():
global history
return history
def clearHistory():
global history
history = ""
return history
def clear():
return None
# --- Output Format ---
def format_dictionary(dictionary):
result = []
for key, value in dictionary.items():
percentage = int(value * 100)
result.append(f"{key}: {percentage}%")
return ', '.join(result)
def format_json(json_data):
confidence_strings = [f"{item['label']}: {round(item['confidence']*100)}%" for item in json_data['confidences']]
result_string = f"{', '.join(confidence_strings)}"
return result_string
def format_json_pt(json_data):
from unidecode import unidecode
confidence_strings = [f"{item['label']}... " for item in json_data['confidences']]
result_string = f"{', '.join(confidence_strings)}"
return unidecode(result_string)
# --- Classification ---
def load_label_mapping(csv_path):
label_mapping = {}
with open(csv_path, newline='', encoding='utf-8') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
label_mapping[int(row['index'])] = row['display_name']
return label_mapping
def predict_yamnet(interpreter, waveform, input_details, output_details, label_mapping):
# Pré-processamento da waveform para corresponder aos requisitos do modelo
input_shape = input_details[0]['shape']
input_data = np.array(waveform, dtype=np.float32)
if input_data.shape != input_shape:
# Redimensionar ou preencher a waveform para corresponder ao tamanho esperado
if input_data.shape[0] < input_shape[0]:
# Preencher a waveform com zeros
padding = np.zeros((input_shape[0] - input_data.shape[0],))
input_data = np.concatenate((input_data, padding))
elif input_data.shape[0] > input_shape[0]:
# Redimensionar a waveform
input_data = input_data[:input_shape[0]]
input_data = np.reshape(input_data, input_shape)
# Executar a inferência
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
# Obter os resultados da inferência
output_data = interpreter.get_tensor(output_details[0]['index'])
# Processar os resultados e imprimir nome da etiqueta
top_labels_indices = np.argsort(output_data[0])[::-1][:3]
results = []
for i in top_labels_indices:
label_name = label_mapping.get(i, "Unknown Label")
probability = float(output_data[0][i]) # Converter para float
results.append({'label': label_name, 'probability': str(probability)})
return results # Retornar um dicionário contendo a lista de resultados
def classify(audio, language="en-us"):
#Preprocessing audio
wav_data = load_wav_16k_mono_librosa(audio)
if(language == "pt-br"):
#Label Mapping
label_mapping = load_label_mapping('content/yamnet_class_map_ptbr.csv')
else:
label_mapping = load_label_mapping('content/yamnet_class_map.csv')
#Load Model by File
model = load_model_file('content/yamnet_classification.tflite')
input_details = model.get_input_details()
output_details = model.get_output_details()
#Classification
result = predict_yamnet(model, wav_data, input_details, output_details, label_mapping)
return result
def classify_realtime(language, audio, state):
#Preprocessing audio
wav_data = load_wav_16k_mono_librosa(audio)
if(language == "pt-br"):
#Label Mapping
label_mapping = load_label_mapping('content/yamnet_class_map_ptbr.csv')
else:
label_mapping = load_label_mapping('content/yamnet_class_map.csv')
#Load Model by File
model = load_model_file('content/yamnet_classification.tflite')
input_details = model.get_input_details()
output_details = model.get_output_details()
#Classification
result = predict_yamnet(model, wav_data, input_details, output_details, label_mapping)
state += result + " "
return result, state
# --- TTS ---
def generate_audio(spec_generator, model, input_text):
parsed = spec_generator.parse(input_text)
spectrogram = spec_generator.generate_spectrogram(tokens=parsed)
audio = model.convert_spectrogram_to_audio(spec=spectrogram)
return 22050, audio.cpu().detach().numpy().squeeze()
def generate_audio_tt5(model, processor, vocoder, speaker_embeddings, text):
inputs = processor(text=text, return_tensors="pt")
audio = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
return 16000, audio.cpu().detach().numpy().squeeze()
def TTS(json_input, language):
global spec_generator, model_nvidia, history
global model_tt5, processor, vocoder, speaker_embeddings
if language == 'en-us':
sr, generatedAudio = generate_audio(spec_generator, model_nvidia, format_json(json_input))
else:
sr, generatedAudio = generate_audio_tt5(model_tt5, processor, vocoder, speaker_embeddings, format_json_pt(json_input))
return (sr, generatedAudio)
def TTS_ASR(json_input, language):
global spec_generator, model_nvidia, history
global model_tt5, processor, vocoder, speaker_embeddings
if language == 'en-us':
sr, generatedAudio = generate_audio(spec_generator, model_nvidia, json_input['label'])
else:
sr, generatedAudio = generate_audio_tt5(model_tt5, processor, vocoder, speaker_embeddings, json_input['label'])
return (sr, generatedAudio)
def TTS_chatbot(language):
global spec_generator, model_nvidia, history
global model_tt5, processor, vocoder, speaker_embeddings
global last_answer
if language == 'en-us':
sr, generatedAudio = generate_audio(spec_generator, model_nvidia, last_answer)
else:
sr, generatedAudio = generate_audio_tt5(model_tt5, processor, vocoder, speaker_embeddings, last_answer)
return (sr, generatedAudio)
# --- ASR ---
def transcribe_speech(filepath, language):
print(filepath)
if(language == "pt-br"):
output = pipe(
filepath,
max_new_tokens=256,
generate_kwargs={
"task": "transcribe",
"language": "portuguese",
},
chunk_length_s=30,
batch_size=8,
)
else:
output = pipe_en(
filepath,
max_new_tokens=256,
generate_kwargs={
"task": "transcribe",
"language": "english",
},
chunk_length_s=30,
batch_size=8,
)
return output["text"]
def transcribe_speech_realtime(filepath, state):
output = pipe(
filepath,
max_new_tokens=256,
generate_kwargs={
"task": "transcribe",
"language": "english",
},
chunk_length_s=30,
batch_size=8,
)
state += output["text"] + " "
return output["text"], state
def transcribe_realtime(new_chunk, stream):
sr, y = new_chunk
y = y.astype(np.float32)
y /= np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
return stream, pipe_en({"sampling_rate": sr, "raw": stream})["text"]
# --- Translation ---
def translate_enpt(text):
global enpt_pipeline
translation = enpt_pipeline(f"translate English to Portuguese: {text}")
return translation[0]['generated_text']
# --- Gradio Interface ---
def interface(language, audio):
global classificationResult
result = classify(language, audio)
dic = {result[0]['label']: float(result[0]['probability']),
result[1]['label']: float(result[1]['probability']),
result[2]['label']: float(result[2]['probability'])
}
# history += result[0]['label'] + '\n'
classificationResult = dic
return dic
def interface_realtime(language, audio):
global history
result = classify(language, audio)
dic = {result[0]['label']: float(result[0]['probability']),
result[1]['label']: float(result[1]['probability']),
result[2]['label']: float(result[2]['probability'])
}
history = result[0]['label'] + '\n' + history
return dic
# --- QA Model ---
def get_answers(retriever, query):
from haystack.pipelines import FAQPipeline
pipe = FAQPipeline(retriever=retriever)
from haystack.utils import print_answers
# Run any question and change top_k to see more or less answers
prediction = pipe.run(query=query, params={"Retriever": {"top_k": 1}})
answers = prediction['answers']
if answers:
return answers[0].answer
else:
return "I don't have an answer to that question"
def add_text(chat_history, text):
chat_history = chat_history + [(text, None)]
return chat_history, gr.Textbox(value="", interactive=False)
def chatbot_response(chat_history, language):
chat_history[-1][1] = ""
global retriever
global last_answer
if language == 'pt-br':
response = get_answers(retriever, GoogleTranslator(source='pt', target='en').translate(chat_history[-1][0]))
response = GoogleTranslator(source='en', target='pt').translate(response)
else:
response = get_answers(retriever, chat_history[-1][0])
last_answer = response
for character in response:
chat_history[-1][1] += character
time.sleep(0.01)
yield chat_history
retriever = load_qa_model()
spec_generator, model_nvidia = initialize_text_to_speech_model()
model_tt5, processor, vocoder, speaker_embeddings = initialize_tt5_model()
pipe = pipeline("automatic-speech-recognition", model="pedropauletti/whisper-small-pt")
pipe_en = pipeline("automatic-speech-recognition", model="openai/whisper-small") |