Spaces:
Running
Running
pedropauletti
commited on
Commit
•
3efe6ac
1
Parent(s):
c38177b
Create helpers.py
Browse files- helpers.py +445 -0
helpers.py
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import tensorflow as tf
|
5 |
+
import tensorflow_io as tfio
|
6 |
+
import csv
|
7 |
+
from scipy.io import wavfile
|
8 |
+
import scipy
|
9 |
+
import librosa
|
10 |
+
import soundfile as sf
|
11 |
+
import time
|
12 |
+
import soundfile as sf
|
13 |
+
import gradio as gr
|
14 |
+
|
15 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
16 |
+
from transformers import AutoProcessor
|
17 |
+
from transformers import BarkModel
|
18 |
+
from optimum.bettertransformer import BetterTransformer
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from nemo.collections.tts.models import FastPitchModel
|
22 |
+
|
23 |
+
from nemo.collections.tts.models import HifiGanModel
|
24 |
+
|
25 |
+
from deep_translator import GoogleTranslator
|
26 |
+
from haystack.document_stores import InMemoryDocumentStore
|
27 |
+
from haystack.nodes import EmbeddingRetriever
|
28 |
+
|
29 |
+
|
30 |
+
# --- Load models ---
|
31 |
+
|
32 |
+
#Load a model from tensorflow hub
|
33 |
+
def load_model_hub(model_url):
|
34 |
+
model = hub.load(model_url)
|
35 |
+
return model
|
36 |
+
|
37 |
+
# Load a model from the project folder
|
38 |
+
def load_model_file(model_path):
|
39 |
+
interpreter = tf.lite.Interpreter(model_path)
|
40 |
+
interpreter.allocate_tensors()
|
41 |
+
return interpreter
|
42 |
+
|
43 |
+
# --- Initialize models ---
|
44 |
+
|
45 |
+
def initialize_text_to_speech_model():
|
46 |
+
spec_generator = FastPitchModel.from_pretrained("nvidia/tts_en_fastpitch")
|
47 |
+
# Load vocoder
|
48 |
+
model = HifiGanModel.from_pretrained(model_name="nvidia/tts_hifigan")
|
49 |
+
return spec_generator, model
|
50 |
+
|
51 |
+
|
52 |
+
def initialize_tt5_model():
|
53 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
|
54 |
+
from datasets import load_dataset
|
55 |
+
|
56 |
+
dataset = load_dataset("pedropauletti/librispeech-portuguese")
|
57 |
+
|
58 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("pedropauletti/speecht5_finetuned_librispeech_pt")
|
59 |
+
|
60 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
61 |
+
|
62 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
63 |
+
|
64 |
+
example = dataset["test"][100]
|
65 |
+
speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
|
66 |
+
|
67 |
+
return model, processor, vocoder, speaker_embeddings
|
68 |
+
|
69 |
+
|
70 |
+
def load_qa_model():
|
71 |
+
document_store = InMemoryDocumentStore()
|
72 |
+
retriever = EmbeddingRetriever(
|
73 |
+
document_store=document_store,
|
74 |
+
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
|
75 |
+
use_gpu=False,
|
76 |
+
scale_score=False,
|
77 |
+
)
|
78 |
+
# Get dataframe with columns "question", "answer" and some custom metadata
|
79 |
+
df = pd.read_csv('content/social-faq.csv', on_bad_lines='skip', delimiter=';')
|
80 |
+
# Minimal cleaning
|
81 |
+
df.fillna(value="", inplace=True)
|
82 |
+
df["question"] = df["question"].apply(lambda x: x.strip())
|
83 |
+
|
84 |
+
questions = list(df["question"].values)
|
85 |
+
df["embedding"] = retriever.embed_queries(queries=questions).tolist()
|
86 |
+
df = df.rename(columns={"question": "content"})
|
87 |
+
|
88 |
+
# Convert Dataframe to list of dicts and index them in our DocumentStore
|
89 |
+
docs_to_index = df.to_dict(orient="records")
|
90 |
+
document_store.write_documents(docs_to_index)
|
91 |
+
|
92 |
+
return retriever
|
93 |
+
|
94 |
+
|
95 |
+
# --- Audio pre-processing ---
|
96 |
+
|
97 |
+
# Utility functions for loading audio files and making sure the sample rate is correct.
|
98 |
+
@tf.function
|
99 |
+
def load_wav_16k_mono(filename):
|
100 |
+
""" Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio. """
|
101 |
+
file_contents = tf.io.read_file(filename)
|
102 |
+
wav, sample_rate = tf.audio.decode_wav(
|
103 |
+
file_contents,
|
104 |
+
desired_channels=1)
|
105 |
+
wav = tf.squeeze(wav, axis=-1)
|
106 |
+
sample_rate = tf.cast(sample_rate, dtype=tf.int64)
|
107 |
+
wav = tfio.audio.resample(wav, rate_in=sample_rate, rate_out=16000)
|
108 |
+
return wav
|
109 |
+
|
110 |
+
|
111 |
+
def load_wav_16k_mono_librosa(filename):
|
112 |
+
""" Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio using librosa. """
|
113 |
+
wav, sample_rate = librosa.load(filename, sr=16000, mono=True)
|
114 |
+
return wav
|
115 |
+
|
116 |
+
|
117 |
+
def load_wav_16k_mono_soundfile(filename):
|
118 |
+
""" Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio using soundfile. """
|
119 |
+
wav, sample_rate = sf.read(filename, dtype='float32')
|
120 |
+
# Resample to 16 kHz if necessary
|
121 |
+
if sample_rate != 16000:
|
122 |
+
wav = librosa.resample(wav, orig_sr=sample_rate, target_sr=16000)
|
123 |
+
return wav
|
124 |
+
|
125 |
+
|
126 |
+
# --- History ---
|
127 |
+
def updateHistory():
|
128 |
+
global history
|
129 |
+
return history
|
130 |
+
|
131 |
+
def clearHistory():
|
132 |
+
global history
|
133 |
+
history = ""
|
134 |
+
return history
|
135 |
+
|
136 |
+
def clear():
|
137 |
+
return None
|
138 |
+
|
139 |
+
# --- Output Format ---
|
140 |
+
|
141 |
+
def format_dictionary(dictionary):
|
142 |
+
result = []
|
143 |
+
for key, value in dictionary.items():
|
144 |
+
percentage = int(value * 100)
|
145 |
+
result.append(f"{key}: {percentage}%")
|
146 |
+
return ', '.join(result)
|
147 |
+
|
148 |
+
|
149 |
+
def format_json(json_data):
|
150 |
+
confidence_strings = [f"{item['label']}: {round(item['confidence']*100)}%" for item in json_data['confidences']]
|
151 |
+
result_string = f"{', '.join(confidence_strings)}"
|
152 |
+
return result_string
|
153 |
+
|
154 |
+
def format_json_pt(json_data):
|
155 |
+
from unidecode import unidecode
|
156 |
+
confidence_strings = [f"{item['label']}... " for item in json_data['confidences']]
|
157 |
+
result_string = f"{', '.join(confidence_strings)}"
|
158 |
+
return unidecode(result_string)
|
159 |
+
|
160 |
+
|
161 |
+
# --- Classification ---
|
162 |
+
|
163 |
+
def load_label_mapping(csv_path):
|
164 |
+
label_mapping = {}
|
165 |
+
with open(csv_path, newline='', encoding='utf-8') as csvfile:
|
166 |
+
reader = csv.DictReader(csvfile)
|
167 |
+
for row in reader:
|
168 |
+
label_mapping[int(row['index'])] = row['display_name']
|
169 |
+
return label_mapping
|
170 |
+
|
171 |
+
|
172 |
+
def predict_yamnet(interpreter, waveform, input_details, output_details, label_mapping):
|
173 |
+
# Pré-processamento da waveform para corresponder aos requisitos do modelo
|
174 |
+
input_shape = input_details[0]['shape']
|
175 |
+
input_data = np.array(waveform, dtype=np.float32)
|
176 |
+
|
177 |
+
if input_data.shape != input_shape:
|
178 |
+
# Redimensionar ou preencher a waveform para corresponder ao tamanho esperado
|
179 |
+
if input_data.shape[0] < input_shape[0]:
|
180 |
+
# Preencher a waveform com zeros
|
181 |
+
padding = np.zeros((input_shape[0] - input_data.shape[0],))
|
182 |
+
input_data = np.concatenate((input_data, padding))
|
183 |
+
elif input_data.shape[0] > input_shape[0]:
|
184 |
+
# Redimensionar a waveform
|
185 |
+
input_data = input_data[:input_shape[0]]
|
186 |
+
|
187 |
+
input_data = np.reshape(input_data, input_shape)
|
188 |
+
|
189 |
+
# Executar a inferência
|
190 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
191 |
+
interpreter.invoke()
|
192 |
+
|
193 |
+
# Obter os resultados da inferência
|
194 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
195 |
+
|
196 |
+
# Processar os resultados e imprimir nome da etiqueta
|
197 |
+
top_labels_indices = np.argsort(output_data[0])[::-1][:3]
|
198 |
+
results = []
|
199 |
+
for i in top_labels_indices:
|
200 |
+
label_name = label_mapping.get(i, "Unknown Label")
|
201 |
+
probability = float(output_data[0][i]) # Converter para float
|
202 |
+
results.append({'label': label_name, 'probability': str(probability)})
|
203 |
+
|
204 |
+
return results # Retornar um dicionário contendo a lista de resultados
|
205 |
+
|
206 |
+
|
207 |
+
def classify(audio, language="en-us"):
|
208 |
+
#Preprocessing audio
|
209 |
+
wav_data = load_wav_16k_mono_librosa(audio)
|
210 |
+
|
211 |
+
if(language == "pt-br"):
|
212 |
+
#Label Mapping
|
213 |
+
label_mapping = load_label_mapping('content/yamnet_class_map_ptbr.csv')
|
214 |
+
else:
|
215 |
+
label_mapping = load_label_mapping('content/yamnet_class_map.csv')
|
216 |
+
|
217 |
+
#Load Model by File
|
218 |
+
model = load_model_file('content/yamnet_classification.tflite')
|
219 |
+
input_details = model.get_input_details()
|
220 |
+
output_details = model.get_output_details()
|
221 |
+
|
222 |
+
#Classification
|
223 |
+
result = predict_yamnet(model, wav_data, input_details, output_details, label_mapping)
|
224 |
+
|
225 |
+
return result
|
226 |
+
|
227 |
+
def classify_realtime(language, audio, state):
|
228 |
+
#Preprocessing audio
|
229 |
+
wav_data = load_wav_16k_mono_librosa(audio)
|
230 |
+
|
231 |
+
if(language == "pt-br"):
|
232 |
+
#Label Mapping
|
233 |
+
label_mapping = load_label_mapping('content/yamnet_class_map_ptbr.csv')
|
234 |
+
else:
|
235 |
+
label_mapping = load_label_mapping('content/yamnet_class_map.csv')
|
236 |
+
|
237 |
+
#Load Model by File
|
238 |
+
model = load_model_file('content/yamnet_classification.tflite')
|
239 |
+
input_details = model.get_input_details()
|
240 |
+
output_details = model.get_output_details()
|
241 |
+
|
242 |
+
#Classification
|
243 |
+
result = predict_yamnet(model, wav_data, input_details, output_details, label_mapping)
|
244 |
+
|
245 |
+
state += result + " "
|
246 |
+
|
247 |
+
return result, state
|
248 |
+
|
249 |
+
|
250 |
+
# --- TTS ---
|
251 |
+
|
252 |
+
def generate_audio(spec_generator, model, input_text):
|
253 |
+
parsed = spec_generator.parse(input_text)
|
254 |
+
spectrogram = spec_generator.generate_spectrogram(tokens=parsed)
|
255 |
+
audio = model.convert_spectrogram_to_audio(spec=spectrogram)
|
256 |
+
return 22050, audio.cpu().detach().numpy().squeeze()
|
257 |
+
|
258 |
+
|
259 |
+
def generate_audio_tt5(model, processor, vocoder, speaker_embeddings, text):
|
260 |
+
inputs = processor(text=text, return_tensors="pt")
|
261 |
+
audio = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
262 |
+
return 16000, audio.cpu().detach().numpy().squeeze()
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
def TTS(json_input, language):
|
267 |
+
global spec_generator, model_nvidia, history
|
268 |
+
global model_tt5, processor, vocoder, speaker_embeddings
|
269 |
+
|
270 |
+
if language == 'en-us':
|
271 |
+
sr, generatedAudio = generate_audio(spec_generator, model_nvidia, format_json(json_input))
|
272 |
+
else:
|
273 |
+
sr, generatedAudio = generate_audio_tt5(model_tt5, processor, vocoder, speaker_embeddings, format_json_pt(json_input))
|
274 |
+
|
275 |
+
return (sr, generatedAudio)
|
276 |
+
|
277 |
+
|
278 |
+
def TTS_ASR(json_input, language):
|
279 |
+
global spec_generator, model_nvidia, history
|
280 |
+
global model_tt5, processor, vocoder, speaker_embeddings
|
281 |
+
|
282 |
+
if language == 'en-us':
|
283 |
+
sr, generatedAudio = generate_audio(spec_generator, model_nvidia, json_input['label'])
|
284 |
+
else:
|
285 |
+
sr, generatedAudio = generate_audio_tt5(model_tt5, processor, vocoder, speaker_embeddings, json_input['label'])
|
286 |
+
|
287 |
+
return (sr, generatedAudio)
|
288 |
+
|
289 |
+
|
290 |
+
def TTS_chatbot(language):
|
291 |
+
global spec_generator, model_nvidia, history
|
292 |
+
global model_tt5, processor, vocoder, speaker_embeddings
|
293 |
+
global last_answer
|
294 |
+
|
295 |
+
if language == 'en-us':
|
296 |
+
sr, generatedAudio = generate_audio(spec_generator, model_nvidia, last_answer)
|
297 |
+
else:
|
298 |
+
sr, generatedAudio = generate_audio_tt5(model_tt5, processor, vocoder, speaker_embeddings, last_answer)
|
299 |
+
|
300 |
+
return (sr, generatedAudio)
|
301 |
+
|
302 |
+
# --- ASR ---
|
303 |
+
|
304 |
+
def transcribe_speech(filepath, language):
|
305 |
+
print(filepath)
|
306 |
+
if(language == "pt-br"):
|
307 |
+
output = pipe(
|
308 |
+
filepath,
|
309 |
+
max_new_tokens=256,
|
310 |
+
generate_kwargs={
|
311 |
+
"task": "transcribe",
|
312 |
+
"language": "portuguese",
|
313 |
+
},
|
314 |
+
chunk_length_s=30,
|
315 |
+
batch_size=8,
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
output = pipe_en(
|
319 |
+
filepath,
|
320 |
+
max_new_tokens=256,
|
321 |
+
generate_kwargs={
|
322 |
+
"task": "transcribe",
|
323 |
+
"language": "english",
|
324 |
+
},
|
325 |
+
chunk_length_s=30,
|
326 |
+
batch_size=8,
|
327 |
+
)
|
328 |
+
|
329 |
+
|
330 |
+
return output["text"]
|
331 |
+
|
332 |
+
|
333 |
+
def transcribe_speech_realtime(filepath, state):
|
334 |
+
output = pipe(
|
335 |
+
filepath,
|
336 |
+
max_new_tokens=256,
|
337 |
+
generate_kwargs={
|
338 |
+
"task": "transcribe",
|
339 |
+
"language": "english",
|
340 |
+
},
|
341 |
+
chunk_length_s=30,
|
342 |
+
batch_size=8,
|
343 |
+
)
|
344 |
+
state += output["text"] + " "
|
345 |
+
return output["text"], state
|
346 |
+
|
347 |
+
|
348 |
+
def transcribe_realtime(new_chunk, stream):
|
349 |
+
sr, y = new_chunk
|
350 |
+
y = y.astype(np.float32)
|
351 |
+
y /= np.max(np.abs(y))
|
352 |
+
|
353 |
+
if stream is not None:
|
354 |
+
stream = np.concatenate([stream, y])
|
355 |
+
else:
|
356 |
+
stream = y
|
357 |
+
return stream, pipe_en({"sampling_rate": sr, "raw": stream})["text"]
|
358 |
+
|
359 |
+
|
360 |
+
# --- Translation ---
|
361 |
+
|
362 |
+
def translate_enpt(text):
|
363 |
+
global enpt_pipeline
|
364 |
+
translation = enpt_pipeline(f"translate English to Portuguese: {text}")
|
365 |
+
return translation[0]['generated_text']
|
366 |
+
|
367 |
+
|
368 |
+
# --- Gradio Interface ---
|
369 |
+
|
370 |
+
def interface(language, audio):
|
371 |
+
global classificationResult
|
372 |
+
result = classify(language, audio)
|
373 |
+
dic = {result[0]['label']: float(result[0]['probability']),
|
374 |
+
result[1]['label']: float(result[1]['probability']),
|
375 |
+
result[2]['label']: float(result[2]['probability'])
|
376 |
+
}
|
377 |
+
# history += result[0]['label'] + '\n'
|
378 |
+
classificationResult = dic
|
379 |
+
|
380 |
+
return dic
|
381 |
+
|
382 |
+
def interface_realtime(language, audio):
|
383 |
+
global history
|
384 |
+
result = classify(language, audio)
|
385 |
+
dic = {result[0]['label']: float(result[0]['probability']),
|
386 |
+
result[1]['label']: float(result[1]['probability']),
|
387 |
+
result[2]['label']: float(result[2]['probability'])
|
388 |
+
}
|
389 |
+
history = result[0]['label'] + '\n' + history
|
390 |
+
return dic
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
# --- QA Model ---
|
395 |
+
|
396 |
+
def get_answers(retriever, query):
|
397 |
+
from haystack.pipelines import FAQPipeline
|
398 |
+
|
399 |
+
pipe = FAQPipeline(retriever=retriever)
|
400 |
+
|
401 |
+
from haystack.utils import print_answers
|
402 |
+
|
403 |
+
# Run any question and change top_k to see more or less answers
|
404 |
+
prediction = pipe.run(query=query, params={"Retriever": {"top_k": 1}})
|
405 |
+
|
406 |
+
answers = prediction['answers']
|
407 |
+
|
408 |
+
if answers:
|
409 |
+
return answers[0].answer
|
410 |
+
else:
|
411 |
+
return "I don't have an answer to that question"
|
412 |
+
|
413 |
+
|
414 |
+
def add_text(chat_history, text):
|
415 |
+
chat_history = chat_history + [(text, None)]
|
416 |
+
return chat_history, gr.Textbox(value="", interactive=False)
|
417 |
+
|
418 |
+
|
419 |
+
def chatbot_response(chat_history, language):
|
420 |
+
|
421 |
+
chat_history[-1][1] = ""
|
422 |
+
|
423 |
+
global retriever
|
424 |
+
global last_answer
|
425 |
+
|
426 |
+
if language == 'pt-br':
|
427 |
+
response = get_answers(retriever, GoogleTranslator(source='pt', target='en').translate(chat_history[-1][0]))
|
428 |
+
response = GoogleTranslator(source='en', target='pt').translate(response)
|
429 |
+
else:
|
430 |
+
response = get_answers(retriever, chat_history[-1][0])
|
431 |
+
|
432 |
+
last_answer = response
|
433 |
+
|
434 |
+
for character in response:
|
435 |
+
chat_history[-1][1] += character
|
436 |
+
time.sleep(0.01)
|
437 |
+
yield chat_history
|
438 |
+
|
439 |
+
|
440 |
+
|
441 |
+
retriever = load_qa_model()
|
442 |
+
spec_generator, model_nvidia = initialize_text_to_speech_model()
|
443 |
+
model_tt5, processor, vocoder, speaker_embeddings = initialize_tt5_model()
|
444 |
+
pipe = pipeline("automatic-speech-recognition", model="pedropauletti/whisper-small-pt")
|
445 |
+
pipe_en = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|