Spaces:
Running
on
Zero
Running
on
Zero
from PIL import Image, ImageEnhance | |
import cv2 | |
import numpy as np | |
from preprocess.humanparsing.run_parsing import Parsing | |
parsing_model = Parsing(0) | |
class BackgroundProcessor: | |
def add_background(cls, human_img: Image, background_img: Image): | |
human_img = human_img.convert("RGB") | |
width = human_img.width | |
height = human_img.height | |
# Create mask image | |
parsed_img, _ = parsing_model(human_img) | |
mask_img = parsed_img.convert("L") | |
mask_img = mask_img.resize((width, height)) | |
background_img = background_img.convert("RGB") | |
background_img = background_img.resize((width, height)) | |
# Convert to numpy arrays | |
human_np = np.array(human_img) | |
mask_np = np.array(mask_img) | |
background_np = np.array(background_img) | |
# Ensure mask is 3-channel (RGB) for compatibility | |
mask_np = np.stack((mask_np,) * 3, axis=-1) | |
# Apply the mask to human_img | |
human_with_background = np.where(mask_np > 0, human_np, background_np) | |
# Convert back to PIL Image | |
result_img = Image.fromarray(human_with_background.astype('uint8')) | |
# Return or save the result | |
return result_img | |
def temp_v2(cls, human_img_path, background_img_path, mask_img_path): | |
# Load the images | |
foreground_img = cv2.imread(human_img_path).resize((768,1024)) # The segmented person image | |
background_img = cv2.imread(background_img_path) # The new background image | |
mask_img = cv2.imread(mask_img_path, cv2.IMREAD_GRAYSCALE) # The mask image from the human parser model | |
# Ensure the foreground image and the mask are the same size | |
if foreground_img.shape[:2] != mask_img.shape[:2]: | |
raise ValueError("Foreground image and mask must be the same size") | |
# Resize background image to match the size of the foreground image | |
background_img = cv2.resize(background_img, (foreground_img.shape[1], foreground_img.shape[0])) | |
# Create an inverted mask | |
mask_inv = cv2.bitwise_not(mask_img) | |
# Convert mask to 3 channels | |
mask_3ch = cv2.cvtColor(mask_img, cv2.COLOR_GRAY2BGR) | |
mask_inv_3ch = cv2.cvtColor(mask_inv, cv2.COLOR_GRAY2BGR) | |
# Extract the person from the foreground image using the mask | |
person = cv2.bitwise_and(foreground_img, mask_3ch) | |
# Extract the background where the person is not present | |
background = cv2.bitwise_and(background_img, mask_inv_3ch) | |
# Combine the person and the new background | |
combined_img = cv2.add(person, background) | |
# Refine edges using Gaussian Blur (feathering technique) | |
blurred_combined_img = cv2.GaussianBlur(combined_img, (5, 5), 0) | |
# Post-processing: Adjust brightness, contrast, etc. (optional) | |
alpha = 1.2 # Contrast control (1.0-3.0) | |
beta = 20 # Brightness control (0-100) | |
post_processed_img = cv2.convertScaleAbs(blurred_combined_img, alpha=alpha, beta=beta) | |
# Save the final image | |
# cv2.imwrite('path_to_save_final_image.png', post_processed_img) | |
# Display the images (optional) | |
cv2.imshow('Foreground', foreground_img) | |
cv2.imshow('Background', background_img) | |
cv2.imshow('Mask', mask_img) | |
cv2.imshow('Combined', combined_img) | |
cv2.imshow('Post Processed', post_processed_img) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
return post_processed_img | |
def add_background_v3(cls, foreground_pil: Image, background_pil: Image): | |
foreground_pil= foreground_pil.convert("RGB") | |
width = foreground_pil.width | |
height = foreground_pil.height | |
# Create mask image | |
parsed_img, _ = parsing_model(foreground_pil) | |
mask_pil = parsed_img.convert("L") | |
# Apply a threshold to convert to binary image | |
# mask_pil = mask_pil.point(lambda p: 1 if p > 127 else 0, mode='1') | |
mask_pil = mask_pil.resize((width, height)) | |
# Resize background image | |
background_pil = background_pil.convert("RGB") | |
background_pil = background_pil.resize((width, height)) | |
# Load the images using PIL | |
#foreground_pil = Image.open(human_img_path).convert("RGB") # The segmented person image | |
#background_pil = Image.open(background_img_path).convert("RGB") # The new background image | |
#mask_pil = Image.open(mask_img_path).convert('L') # The mask image from the human parser model | |
# Resize the background to match the size of the foreground | |
#background_pil = background_pil.resize(foreground_pil.size) | |
# Resize mask | |
#mask_pil = mask_pil.resize(foreground_pil.size) | |
# Convert PIL images to OpenCV format | |
foreground_cv2 = cls.pil_to_cv2(foreground_pil) | |
background_cv2 = cls.pil_to_cv2(background_pil) | |
#mask_cv2 = pil_to_cv2(mask_pil) | |
mask_cv2 = np.array(mask_pil) # Directly convert to NumPy array without color conversion | |
# Ensure the mask is a single channel image | |
if len(mask_cv2.shape) == 3: | |
mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY) | |
# Threshold the mask to convert it to pure black and white | |
_, mask_cv2 = cv2.threshold(mask_cv2, 0, 255, cv2.THRESH_BINARY) | |
# Ensure the mask is a single channel image | |
#if len(mask_cv2.shape) == 3: | |
# mask_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_BGR2GRAY) | |
# Create an inverted mask | |
mask_inv_cv2 = cv2.bitwise_not(mask_cv2) | |
# Convert mask to 3 channels | |
mask_3ch_cv2 = cv2.cvtColor(mask_cv2, cv2.COLOR_GRAY2BGR) | |
mask_inv_3ch_cv2 = cv2.cvtColor(mask_inv_cv2, cv2.COLOR_GRAY2BGR) | |
# Extract the person from the foreground image using the mask | |
person_cv2 = cv2.bitwise_and(foreground_cv2, mask_3ch_cv2) | |
# Extract the background where the person is not present | |
background_extracted_cv2 = cv2.bitwise_and(background_cv2, mask_inv_3ch_cv2) | |
# Combine the person and the new background | |
combined_cv2 = cv2.add(person_cv2, background_extracted_cv2) | |
# Refine edges using Gaussian Blur (feathering technique) | |
blurred_combined_cv2 = cv2.GaussianBlur(combined_cv2, (5, 5), 0) | |
# Convert the result back to PIL format | |
combined_pil = cls.cv2_to_pil(blurred_combined_cv2) | |
""" | |
# Post-processing: Adjust brightness, contrast, etc. (optional) | |
enhancer = ImageEnhance.Contrast(combined_pil) | |
post_processed_pil = enhancer.enhance(1.2) # Adjust contrast | |
enhancer = ImageEnhance.Brightness(post_processed_pil) | |
post_processed_pil = enhancer.enhance(1.2) # Adjust brightness | |
""" | |
# Save the final image | |
# post_processed_pil.save('path_to_save_final_image_1.png') | |
# Display the images (optional) | |
#foreground_pil.show(title="Foreground") | |
#background_pil.show(title="Background") | |
#mask_pil.show(title="Mask") | |
#combined_pil.show(title="Combined") | |
# post_processed_pil.show(title="Post Processed") | |
return combined_pil | |
def replace_background(cls, foreground_img_path: str, background_img_path: str): | |
# Load the input image (with alpha channel) and the background image | |
#input_image = cv2.imread(foreground_img_path, cv2.IMREAD_UNCHANGED) | |
input_image = cv2.imread(foreground_img_path) | |
background_image = cv2.imread(background_img_path) | |
# Ensure the input image has an alpha channel | |
if input_image.shape[2] != 4: | |
raise ValueError("Input image must have an alpha channel") | |
# Extract the alpha channel | |
alpha_channel = input_image[:, :, 3] | |
# Resize the background image to match the input image dimensions | |
background_image = cv2.resize(background_image, (input_image.shape[1], input_image.shape[0])) | |
# Convert alpha channel to 3 channels | |
alpha_channel_3ch = cv2.cvtColor(alpha_channel, cv2.COLOR_GRAY2BGR) | |
alpha_channel_3ch = alpha_channel_3ch / 255.0 # Normalize to 0-1 | |
# Extract the BGR channels of the input image | |
input_bgr = input_image[:, :, :3] | |
# Blend the images using the alpha channel | |
foreground = cv2.multiply(alpha_channel_3ch, input_bgr.astype(float)) | |
background = cv2.multiply(1.0 - alpha_channel_3ch, background_image.astype(float)) | |
combined_image = cv2.add(foreground, background).astype(np.uint8) | |
# Save and display the result | |
cv2.imwrite('path_to_save_combined_image.png', combined_image) | |
cv2.imshow('Combined Image', combined_image) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
# Function to convert PIL Image to OpenCV format | |
def pil_to_cv2(cls, pil_image): | |
open_cv_image = np.array(pil_image) | |
# Convert RGB to BGR if it's a 3-channel image | |
if len(open_cv_image.shape) == 3: | |
open_cv_image = open_cv_image[:, :, ::-1].copy() | |
return open_cv_image | |
# Function to convert OpenCV format to PIL Image | |
def cv2_to_pil(cls, cv2_image): | |
# Convert BGR to RGB if it's a 3-channel image | |
if len(cv2_image.shape) == 3: | |
cv2_image = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(cv2_image) | |
return pil_image | |